Latest experimental results

in the field of neutrino physics

PANIC Lisbon Portugal

Particles and Nuclei International Conference

6 September 2021

Established Neutrino Physics

- 3 flavor v_e , v_μ , v_τ , spin ½, neutral, left handed, $\sigma(1 \text{ MeV}) \approx 10^{-44} \text{ cm}^2$
- Tiny masses: 0.04 eV < $m_v < \approx 1 eV$
- Flavor mixing: two views on W-decay:

• Flavor mixing: PMNS matrix U: $|v_i\rangle = \Sigma U_{\alpha i} |v_{\alpha}\rangle$

3v Oscillation Formalism

• 3 masses $m_{1,2,3}$: $\Delta m_{sol}^2 = m_2^2 - m_1^2 \sim 8 \ 10^{-5} \ eV^2$ & $\Delta m_{atm}^2 = |m_3^2 - m_1^2| \sim 2 \ 10^{-3} \ eV^2$

T. Lasserre – PANIC 2021

• Oscillation in vacuum :
$$P(v_x \rightarrow v_x) \approx 1 - \sin^2(2\theta_i) \times \sin^2\left(1.3 \cdot \Delta m_i^2 \cdot \frac{L}{E}\right)$$

Measurements of the neutrino mixing parameters

cea

Solar + Reactor Experiments

• Consistent Solar/Reactor $\Delta m_{21}^2 \& \theta_{12}$

Experimental evidence of the CNO process by Borexino

observation by Borexino

|U_{ti}|²

 $V_{e} = |U_{ei}|^2 V_{\mu} = |U_{\mu i}|^2 V_{\tau}$

- $\Delta m^2 (eV^2) \sim L(km) / E(MeV)$
- Atmospheric neutrinos: L ~ 10^4 km & E ~ 1-30 GeV
- Reactors neutrinos:
 L ~ 1 km & E ~ 3 MeV
- Accelerator neutrinos: L ~ 1000 km & E ~ 3 GeV

10

Long-baseline Accelerator Experiments (LBL)

- Explore multiple oscillation modes (ν_{μ} dissapearance ν_{e} and $\bar{\nu}_{e}$ appearance)
- Different baselines and energies. Complementary to address parameter degeneracies

 v_{μ} Dissapearance

P(

$$\nu_{\mu} \rightarrow \nu_{\mu} \rangle \approx 1 - \frac{\sin^2(2\theta_{23})}{E} \times \sin^2\left(\frac{1.3 \cdot \Delta m_3}{E}\right)$$

u_{μ} Dissapearance Results (LBL, Atmospheric u's)

- Accurate & consistent measurements of $\Delta m_{31}^2 \& \theta_{23}$
- Slight preference to normal mass ordering and upper octant, θ_{23} >45°

 V_{e} $|U_{ei}|^2$ V_{μ} $|U_{\mu i}|^2$ V_{τ} $|U_{\tau i}|^2$

$heta_{13}$ at Nuclear Reactors

Clean measurement of θ_{13}

Stopped data taking in 2018

200 m³

Running till 2022

40 m³

Running for a few years

Daya Bay Phys.Rev.Lett. 121 (2018) 24, 241805

RENO, Phys.Rev.Lett. 121 (2018) 20, 201801

8

T. Lasserre – PANIC 2021

A new anomaly revealed in reactor neutrino spectra

Capturing neutrino properties

Neutrino Property	Neutrino Source(s)	Method Status		
Δm^2_{21}	reactor, sun	ν – oscillations	(2.2%)	
θ_{12}	reactor, sun	ν – oscillations	(4.4%)	
Δm^2_{31}	accelerator, reactor, atmospheric	ν — oscillations	(1.3%)	
sign of Δm^2_{31}	accelerator, reactor, atmospheric	ν — oscillations	2 σ hints	
θ ₂₃	accelerator, atmospheric	ν — oscillations	(5.0%)	
θ ₁₃	reactor, accelerator ν — oscillations		(3.8%)	
δ	accelerator	ν — oscillations	×	
Dirac / Majorana	specific isotopes	0νββ	X	
m_1, m_2, m_3	specific isotopes, $C\nu B$	β , <i>EC</i> , $0\nu\beta\beta$ - cosmology	[range]	

What is the spectral mass pattern ? (mass ordering or hierarchy)

sign(Δm_{31}^2) with reactor neutrinos

sign(Δm_{31}^2) with reactor neutrinos

20 kt JUNO Experiment (start in 2023)

Oscillations in matter

The DUNE experiment – Start in 2027

- First MO statements after 12 kt-MW-yr exposures (1 year)
- 99% C.L. statement after 66 kt-MW-yr for both orderings (6 years)

Do the behavior of v violate CP?

Neutrino & Antineutrino Oscillations

NOvA & T2K $\nu_e/\bar{\nu}_e$ Appearance

- In Normal Ordering, tension in the evaluation of δ_{CP}
 - statistical fluctuation?
 - systematic error?
 - Joint analysis ongoing
- Inverted ordering is disfavored by all other data
- (too) large NSI could solve the tension

The DUNE Experiment – Start in late 20's

- 1300 km baseline
- Liquid Argon TPC
- 4 x 10 kt fiducial

PANIC 2021

$$3\sigma$$
 for $\delta_{\rm CP} = \pm \frac{\pi}{2}$: 100 kt.MW.y

- For 50% of δ_{CP} values:
 - 3σ: 200 kt.MW.y
 - 5σ: 650 kt.MW.y (10 years)

The Hyper-Kamiokande Experiment – Start in 2027

T. Lasserre – PANIC 2021

The absolute neutrino mass scale

Neutrino masses

Lower bounds: from oscillation experiments

Upper bounds: from laboratory measurements & Cosmology

KATRIN 2019 Science Runs – 1st sub-eV upper limit

Cosmology

mi

> ~ 1 eV: $\nu' s$ become non relativistic before recombination

- Imprint in the CMB spectrum
- Rock-solid upper bound

•

JCAP 04 (2020) 038

~ 1 eV: $\nu's$ become non relativistic after recombination

- ν masses suppress the matter power spectrum on small scales
- Constraints from:

m_i

Constraints based on ACDM

Cosmology

Is Lepton Number conserved?

Creation of matter without antimatter partners ?

Dirac or Majorana v?

$0 u\beta\beta$ Decay: General Idea

If $0\nu\beta\beta$ is discovered:

- Proof that neutrinos are Majorana particles and that Lepton number is violated
- Half life reveals neutrino mass

$$\frac{1}{T_{1/2}^{0\nu}} = g_A^4 \cdot G_{0\nu}(Q, Z) \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2$$

* Most promising for next-generation searches

⁴⁸Ca, ⁷⁶Ge^{*}, ⁸²Se,

⁹⁶Zr, ¹⁰⁰Mo^{*}, ¹¹⁰Pd,

¹¹⁶Cd, ¹²⁴Sn, ¹³⁰Te^{*},

¹³⁶Xe^{*}, and ¹⁵⁰Nd

0 uetaetaeta Decay: Experimental Challenges

Never observed – Best limits $T_{1/2}^{0\nu} > 10^{24} - 10^{26} \text{ y}$

$$\frac{10^{25} \text{ y}}{T_{1/2}} \approx \left(\frac{|m_{\beta\beta}|}{\text{eV}}\right)^2$$

Key requirements:

- Large exposure (tonne-scale)
- Excellent energy resolution (~ 1% @ $Q_{\beta\beta}$)
- Ultra-low background (< 1 cts/year/t/ROI)

Link to Nuclear Physics

Quenching of axial nucleon coupling g_A ?

Factor 2 – 3 uncertainty between nuclear models

Latest 0 uetaetaeta Results

<image/>	Large source mass Easily scalable Fluid embedded source	KamLAND-Zen 400 EXO-200	Dilution in liquid scintillator Liquid TPC Completed Data taking	136 <mark>Xe</mark> 136 Xe Giuliani
	High energy resolution	MAJORANA DEM.	Semiconductor detectors	⁷⁶ Ge
	/ efficiency	GERDA	Semiconductor detectors	⁷⁶ Ge
	Crystal	CUPID-0	Scintillating bolometers	⁸² Se
	embedded	CUPID-Mo	Scintillating bolometers	¹⁰⁰ Mo
	source	CUORE	Bolometers	¹³⁰ Te

Latest $0 u\beta\beta$ Results

Prospects within 5 years

Data taking Construction / Commissioning

and beyond...

Planned experiments are expected reach their final sensitivity by 2030-2040

Advanced R&D

TAUP 2021 VALENCIA A. Giuliani

Are there additional light (sterile) v states?

A bunch of unexplained anomalies at $L_{[m]}/E_{[MeV]} \sim 1$

Are there additional neutrinos (mainly steriles) ?

Experimental results do not favor sterile neutrinos

Coherent elastic neutrino nucleus scattering (CEvNS)

Coherent elastic neutrino nucleus scattering (CEVNS)

The COHERENT experiment breakthrough

Beam OF

ថ្លី 10²

40

90

51

Science

Spallation Neutron Source

Astrophysical neutrinos

Water Cherenkov Neutrino Telescopes

A Glance at ν Astronomy with Ice-Cube

CEZ

• Since 2013 — Astrophysical neutrinos discovered (extra-galactic origin)

2018 — Evidence for first source
 ν events in a direction of a flaring blazar

• 2019 — First Glashow resonance observed

• Neutrino astronomy is now a reality Need for (even) larger telescopes!

IceCube (1 km³)

ANTARES (0.01 km^3)

KM3Net (1.1 km^3)

ARCA: large array for high-energy neutrinos

ORCA: dense array for low-energy neutrinos (Neutrino oscillations – Mass Ordering)

Prospects

Thank you for your attention

Report of the efforts of large collaborations and many people

All my apologies if your favorite topics could not be covered