

李政道研究听 **Tsung-Dao Lee Institute**

Observational Multi-messenger Physics with Neutrinos and Beyond

Donglian Xu⁺ (TDLI)

PANIC 2021 Conference

^t*donglianxu@sjtu.edu.cn* 2021.09.05-10, Online

M. Markov 1960

B. Pontecorvo

M.Markov : we propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

Birth of neutrino astronomy: SN1987A

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

Cosmic Neutrinos

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

New Era of Multi-messenger Astronomy

The transient sky is very vibrant... potentially with low energy MeV neutrinos!

Supernovae:

- Pre-burst: ~ days, <1kpc
- Core collapse (Type II): ~ 10 s, Galactic & vicinity
- Type Ia: ~1s, <1kpc
- Neutrinos as diagnostics for explosion mechanism: quark-hadron phase transition, ~ms
- The Sun
- Neutron star mergers
- Gamma ray bursts
- Fast radio bursts

Model-independent, self-adaptive, broadband monitoring is essential

Multi-messengers from Core-collapse SNe

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

Neutrinos as Diagnostics for Explosion Mechanism

Supernova Burst Neutrinos

Astrophysics

- Stellar evolution
- Explosion mechanism
- Production of heavy elements
- Multi-messenger alerts

Particle physics

- Bound on neutrino mass
- Neutrino mass ordering
- Collective neutrino oscillation
- BSM new physics

SNe	@	10	kpc
-----	---	----	-----

E_d [MeV]

Channel	Typo	Events for different $\langle E_v \rangle$ values		
	туре	12 MeV	14 MeV	16 MeV
$\nabla_e + p \rightarrow e^+ + n$	CC	$< 4.3 \times 10^3$	5.0 × 10 ³	5.7 × 10 ³
$v + p \rightarrow v + p$	NC	0.6 × 10 ³	1.2 × 10 ³	2.0 × 10 ³
$V + e \rightarrow V + e$	ES	3.6 × 10 ²	3.6 × 10 ²	3.6 × 10 ²
$v + {}^{12}C \rightarrow v + {}^{12}C^*$	NC	1.7 × 10 ²	3.2 × 10 ²	5.2 × 10 ²
v_e + ${}^{12}C \rightarrow e^-$ + ${}^{12}N$	CC	0.5 × 10 ²	0.9 × 10 ²	1.6 × 10 ²
∇_{e} + ¹² C \rightarrow e ⁺ + ¹² B	CC	0.6 × 10 ²	1.1 × 10 ²	1.6 × 10 ²

Neutrino Physics with JUNO, JPG, 16

Supernova Burst Neutrinos

- Neutronization burst
- v_e only, not detectable via IBD
- **v-p ES is ideal** channel to observe it

Robust theory prediction: Insensitive to progenitor mass, treatment of neutrino transport, and the nuclear equation of state (EOS)

Neutrino Mass Hierarchy

 \mathbf{v}_{e} survival probability is very sensitive to mass hierarchy: NH : $P_{ee} \approx 0.02$; IH : $P_{ee} \approx 0.3$

Need the **neutral current v-p ES** to measure **the total neutrino flux** SN trigger on **v-p ES events** can be ~ **50 ms faster** than on **IBD** events

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

_____// || \(_

Neutron Star Merger Neutrinos

Source: Daniel Price (U/Exeter) and Stephan Rosswog (Int. U/Bremen)

HMNS: Hyper Massive Neutron Star Source: A. Perego et al., MNRAS 443 (2014)

10

- Thermal neutrinos peak at tens of ms after the coalescence of the two neutron stars
- Multi-messenger observation (especially with GW) is essential!

Neutron Star Merger Neutrinos

- Little is known about the thermal neutrino spectra from binary neutron star mergers
- Rate of mergers is low (~ 1 per million year in the Galaxy)
- GW170817 ~ 40 Mpc away, no neutrinos detected – neutrinos were beamed and missed Earth?

arXiv:1710.05922

Multi-Messenger Trigger System of JUNO

Multi-Messenger & Low-threshold Physics

- Two major trigger systems in JUNO: Global trigger (threshold ~ 200 keV); Multi-messenger trigger (threshold ~ 20 keV)
- Low threshold physics potential: Significantly improve physics potential in this unprecedentedly low-threshold territory, e.g. low energy solar neutrinos
- > XENON1T reported a low energy event excess at 1-7 keV, could be compatible with a most probable enhanced neutrino magnetic moment $\mu_v = 2.1 \times 10^{-11} \mu_B$

Cosmic Neutrinos

Potential Cosmic Neutrino Sources

Astrophysical Beam Dump

Hadronic processes: Direct correlation between gamma and neutrinos!

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

Hadronic vs Leptonic Processes

17

Detecting high-energy neutrinos from astrophysical sources would be the "smoking gun" evidence for UHECR origin

Neutrino and Multi-messenger Astronomy

http://web.physik.rwth-aachen.de/~wiebusch/Research.html

Cosmic Rays:

- Abundant
- Origin unknown
- Charged, trajectory deflected
- Absorbed by CMB at highest energies → GZK horizon

Gamma Rays:

- Interact with CMB
- Absorbed by infrared background
 → observational horizon

Gravitational waves:

- Highly penetrating
- No observational horizon

Neutrinos:

- Weakly interact
- Point back to sources → unique messenger to trace the high energy Universe!

Detection Principle – Cherenkov Radiation

- Neutrinos cannot be detected directly
- Detecting light from neutrino interactions with the ice nuclei (Deep Inelastic Scattering)
- Sensitive to single photon

Interaction Media

Glacial ice

Most transparent medium on Earth! Scattering length: ~25m Absorption length: >100m

Lake/sea water

Lake BaikalWater properties:
Abs. length: $22 \pm 2 \text{ m}$
Scatt. length: $L_s \sim 30-50 \text{ m}$
 $L_s /(1 - \langle \cos\theta \rangle) \sim 300-500 \text{ m}$

Baikal-GVD

Current Status of Nu Astronomy

In 2013, IceCube discovered a diffuse extraterrestrial neutrino flux – the true breakthrough of the field !

21

In 2017, IceCube observed the first evidence of a a high energy neutrino source TXS0506+056

Origin of most IceCube neutrinos remains elusive No definitive tau neutrinos have been identified

Current Status of Nu Astronomy

IceCube neutrino sky map

Slide courtesy: M. Kowalski, TeVPA2017

22

First Source Candidate

1. IC170922 (290 TeV) + Multi-messenger: chance probability: 3σ

2. Neutrino emission in archival data: 19 (6 exp. bg) events ; 3.5σ

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

Optimizing Next-Gen Nu Telescopes?

Angular resolution

Limited by medium optical properties for high-E neutrino events

> All flavor neutrino discrimination efficiency,

especially tau neutrinos:

- Long duration waveform readout (double pulse method)
- Geometry layout optimization... limited by spacing

Geographic sites:

- Most sensitive to the Galactic Center?
- Duty cycles

Construction cost:

- Open water vs Antarctic glacial ice drilling
- Deep ocean engineering vs lake operation

Resolving More Astro Nu Sources?

US Astro2020 Decadal Survey: 1903.04334

25

It requires better than 0.1° pointing to resolve the most pessimistic source scenarios... K. Fang et al. JCAP 12, 017 (2016)

Interaction Media Comparison

26

	Track	Cascade	
KM3NeT	~ 0 . 1 °	~ 1 °	
IceCube	≳ 1°	> 10°	

South Pole: IceCube Collaboration, J. Geophys. Res. 111, D13203, 2006 KM3Net Italy: NEMO Collaboration, Astropart. Phys., 27, 1—9, 2007 Antares: Antares Collaboration, Astropart. Phys., 23, 131—155, 2005 Lake Baikal: A. Avrorin et.al., Nucl. Instrum. Meth. A, 693, 186—194, 2012

Neutrino Oscillation over Astro Baselines

Observable / probe: astrophysical neutrino **flavor ratio**

27

M. Bustamante, J. Beacom and W. Winter, Phys. Rev. Lett. 115, 161302 (2015)

Significantly boosting tau neutrino identification efficiency is the key !

Improving Angular Resolution?

hDOM

PMT + SiPM hybrid Digital Optical Module

hDOM vs KM3NeT mDOM:

hDOM

- ~100% improvement in pointing with SiPM-only
- ~40% improvement in pointing with hDOM
- hDOM in ice do not benefit as much as in water

Conceptual Design of hDOM

F. Hu, Z. Li and **DLX** PoS(ICRC2021)1043

Geographic sites?

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

A Nu Telescope Near the Equator?

30

n ís

Duty cycles

NeuTel Site Exploration in South China Sea

33

Testing & Calibrating the PMT System

Testing & Calibrating the CCD System

Pressure Test for Glass Vessels

Deployment System

Candidate Site Four-season Monitoring

Stay tuned!

Donglian Xu (T. D. Lee Inst.) | Neutrinos, Multi-messengers, and Beyond – PANIC2021 Plenary | 2021.09.06, Online

Summary

- The serendipitous detection of SN1987A started a new field of neutrino astronomy
- IceCube's discovery of high-energy cosmic neutrinos has marked the new era of nu astronomy
- Neutrino and multi-messenger astronomy is still in its infancy
- The upcoming JUNO, Hyper-K and DUNE will play important roles in detecting the next Galactic supernova
- The campaign to hunt for more cosmic neutrino sources via both multi-messengers and better designed next-gen neutrino telescopes is ON...