

Higgs physics results by ATLAS and CMS

Nicolò Trevisani

University of Oviedo - ICTEA

PANIC2021: 22nd Particles and Nuclei Interaction Conference, 5-10 Sep 2021, Lisbon

The Higgs Boson in the Standard Model

Responsible for electroweak symmetry breaking

$$\mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - \sum_{f} g_{f}(\bar{\psi}_{L}\phi\psi_{R} + h.c.) - V(\phi)$$

Gives mass to vector bosons through gauge couplings and vev

Fermion masses determined by Yukawa couplings

Stability of vacuum at high energies depends on $\rm m_{_{\rm H}}$ and $\rm m_{_{\rm top}}$

Higgs Production Mechanisms at the LHC

Cross-section values at 13 TeV from LHC Higgs WG

Higgs Decay Channels

Branching fractions fixed by the Higgs mass

• values from <u>LHC Higgs WG</u>

Golden channels:

- $H \rightarrow ZZ (2.6\%)$
- $H \rightarrow \gamma \gamma (0.23\%)$

Other di-boson or third-generation decay channels:

- $H \rightarrow WW (21.5\%)$
- $H \rightarrow \tau \tau$ (6.3%)
- $H \rightarrow bb (57.7\%)$

More challenging channels:

- $H \rightarrow \mu\mu$ (0.02%)
- $H \rightarrow cc (2.9\%)$
- $H \rightarrow Z\gamma (0.15\%)$
- $H \rightarrow \gamma \gamma^* (0.01\%)$

Current Status

About 7.7 millions Higgs bosons produced during Run 2 by each experiment

Enough data for precision measurements and search for rare decays:

- Main production modes and decay channels studied in detail
 - decays to bosons and third-generation fermions
 - fiducial, differential measurements, and STXS
 - challenging phase spaces
- Starting the inspection of second-generation fermions
 - $\circ \quad$ evidence for $H \rightarrow \mu \mu$ and search for $H \rightarrow cc$
- And also other rare decays
 - $\circ \quad H \to \gamma \gamma^* \text{ or } H \to Z \gamma$
- Double Higgs production
 - key to study self-coupling and the structure of the scalar Higgs field potential

$\sqrt{s} = 7$ TeV, L = 5.1 fb⁻¹ $\sqrt{s} = 8$ TeV, L = 5.3 fb⁻¹ Events / 3 GeV m_⊔=125 GeV m, (GeV) 100 120 m_{4f} (GeV) Eur. Phys. J. C 81, 488 (2021) Events/1.25 GeV ATLAS Higgs (125 GeV) tXX. VVV /// Uncertaint 30 20 120 110

Phys. Lett. B 716 (2012) 30

m₄ [GeV]

Mass Measurements

Only Higgs free parameter, fixes all other properties

- measured using the golden channels

 they provide the best resolution
- Energy and momentum calibrations are key
 - detector calibration and alignment
 - constraints to Z mass
- CMS: combination of $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ results using Run 1 and 2016 data \circ 125.38 + 0.14 GeV
 - 0.11% uncertainty
- ATLAS: $H \rightarrow ZZ$ result using full Run 2 dataset
 - \circ 124.92 ± 0.19 (stat.)^{+0.09}_{-0.06} (syst.)
 - 0.2% uncertainty

$H \rightarrow ZZ$

Final state with two pairs of opposite-sign, same-flavour leptons

Cross-section measurement performed in a fiducial volume that closely matches the reconstruction level selection

- reduced model dependence
- integrated fiducial cross section and differential cross sections

Fiducial cross-section results: CMS:

$$\sigma_{fid} = 2.84 + 0.23 + 0.23 + 0.26 + 0.21 \text{ (syst) fb} \ (\sigma_{fid}^{SM} = 2.84 \pm 0.15 + 0.15 \text{ (syst) fb} \ (\sigma_{fid}^{SM} = 2.84 \pm 0.15 \text{ (syst) fb}$$

•
$$\sigma_{fid} = 3.28 \pm 0.32 \text{ fb} \ (\sigma_{fid}^{SM} = 3.41 \pm 0.18 \text{ fb})$$

Eur. Phys. J. C 80 (2020) 942

7

$H \rightarrow ZZ$

Measurement of different production mechanisms in mutually exclusive regions (STXS)

- CMS uses a finer categorization
- ATLAS categorization optimized to reduce correlation among measurements

$H \to \gamma \gamma$

Large background from non-resonant photon pairs estimated through a fit to data

Both ATLAS and CMS presented inclusive and STXS results

• ATLAS published also differential measurements

ATLAS-CONF-2019-029, ATLAS-CONF-2020-026

Inclusive cross-section results:

- ATLAS (fiducial):
 - \circ (σ × B_{γγ})_{obs} = 127 ± 10 fb (σ × B_{γγ}SM = 116 ± 5 fb) CMS (inclusive):
 - $\mu = \sigma / \sigma_{SM} = 1.12^{+0.07}_{-0.06} (\text{stat.}) \pm 0.03 (\text{syst.}) \pm 0.06 (\text{theo.})$

<u>JHEP07 (2021) 027</u>

$H \to \gamma \gamma$

STXS results are also provided in bins targeting different production mechanisms:

• ggH, VBF, VH, ttH, and tH

ATLAS-CONF-2020-026

$H \rightarrow WW$

EW

Clean leptonic final state but neutrinos spoil mass resolution ATLAS:

- ggH and VBF total (σ x BR) measurements
 - ggH: $\sigma_{obs} = 12.4 \pm 1.5$ pb ($\sigma_{SM} = 10.4 \pm 0.6$ pb) Ο
 - VBF: $\sigma_{obs} = 0.79 + 0.19 0.16 \text{ pb}$ ($\sigma_{SM} = 0.81 \pm 0.02 \text{ pb}$)
- STXS in 11 categories

1		
	ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $H \rightarrow WW^* \rightarrow evuv$	 Total Statistical Unc. Systematic Unc. SM Prediction
	p-value = 52% To	tal (Stat. Syst.) SM Unc.
<i>ggH-0j</i> , <i>p</i> _{_{\rm T}}^H < 200 GeV	1.20 +0.	16 (+0.08 , +0.14) ±0.06
<i>ggH-</i> 1j, <i>p</i> ^{<i>H</i>} ₁ < 60 GeV	0.85 +0.	59 (+0.30, +0.50 60 (-0.30, -0.52) ±0.14
ggH - $rac{1}{2}$, 60 $\leq ho_{ op}^{H} <$ 120 GeV	0.73 ⁺⁰	53 (+0.32 +0.42) ±0.16
<i>ggH</i> -1 <i>j</i> , 120 ≤ <i>p</i> ^{<i>H</i>} _T < 200 GeV		81 (*0.64,*0.49 78 (-0.62,-0.47) ±0.21
ggH -2 j , $p_{_{ m T}}^{_H}$ < 200 GeV		79 (+0.41 , +0.67) ±0.21
ggH , $p_{_{ m T}}^{_H} \ge 200~{ m GeV}$		81 (*0.65 *0.49 78 (-0.63 , -0.46) ±0.28
$EW~qqH\text{-}2j,350~\leq\!m_{jj}<700~GeV,p_{_{\mathrm{T}}}^{_{H}}<200~GeV$	-0.20 ⁺⁰ .	55 (+0.40 +0.38) ± 0.13
EW qqH-2j, 700 $\leq m_{ji} < 1000 \text{ GeV}, p_{T}^{H} < 200 \text{ GeV}$	0.50 +0.	59 (+0.49 , +0.32) ±0.11
W qqH-2j, 1000 $\leq m_{jj} < 1500 \text{ GeV}, p_{\gamma}^{H} < 200 \text{ GeV}$		51 (+0.45 , +0.25) ±0.10
EW qqH-2j, $m_j \ge 1500 \text{ GeV}, p_{_{ m T}}^H < 200 \text{ GeV}$	0.96	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$EW qqH\text{-}2j, m_j \geq \! 350~ \mathrm{GeV}, p_{_{\mathrm{T}}}^{_{H}} \geq \! 200~ \mathrm{GeV}$	1.13 ^{+0.}	47 (*0.43 *0.18) ±0.09
-	1 0 1 2 3 4	5 6 7
	ATLAS CONF 2021 01	$\underline{4} \sigma / \sigma_{SN}$

JHEP03 (2021) 003

CMS:

integrated fiducial cross section

$$\sigma_{fid} = 86.5 \pm 9.5 \text{ fb} \ (\sigma_{fid}^{SM} = 82.5 \pm 4.2 \text{ fb})$$

- differential cross-section
 - \circ p_T(H) and nJets

$H \to \tau\tau$

Final state with at least one hadronically-decaying τ lepton

CMS:

- inclusive fiducial cross-section
 - \circ $\sigma_{fid} = 426 \pm 102 \text{ fb} (\sigma_{fid}^{SM} = 408 \pm 27 \text{ fb})$
- differential cross-section
 - \circ nJets, p_T(Higgs), leading jet p_T

ATLAS:

- inclusive cross-section times BR for $|y_H| < 2.5$:
 - $\sigma_{obs} = 2.89 \pm 0.21 \text{ (stat.)}^{+0.37}_{-0.32} \text{ (syst.)} \text{ pb } (\sigma_{SM} = 3.14 \pm 0.08 \text{ pb})$
 - also individual measurements per production mode
- STXS in 9 categories

ATLAS-CONF-2021-044

$H \to bb$

Targets a highly-boosted final state, with two b jets merged into a single large-radius jet

- $p_T(Higgs) > 450 \text{ GeV}$
- analysis strategy validated with $Z \rightarrow bb$ decay
- both inclusive cross-section measurement and differential as a function of p_T(Higgs)

CMS:

• $\mu_{\rm H} = 3.7 \pm 1.2 \text{ (stat)}^{+0.8}_{-0.7} \text{ (syst)}^{+0.8}_{-0.5} \text{ (theo)}$

ATLAS:

• $\sigma_{obs} (p_T(Higgs) > 450 \text{ GeV}) = 13 \pm 57 \text{ (stat)} \pm 22 \text{ (syst)} \pm 3 \text{ (theo) fb}$

Both results in agreement with the SM

<u>JHEP12 (2020) 085</u>

$H \to \mu \mu$

Evidence for Higgs coupling to second-generation fermions

Fit to data to distinguish the signal peak above the dominant $Z \rightarrow \mu\mu$ smoothly-falling distribution

• CMS uses template-based approach for the VBF category to enhance sensitivity with a DNN

Results (significance):

- CMS: 3 σ obs (2.5 σ exp)
- ATLAS: 2 σ obs (1.7 σ exp)

JHEP01 (2021) 148

$H \longrightarrow cc$

Use of multivariate analysis techniques to identify jets produced by c quarks

Targeting VH associate production to trigger interesting events and suppress backgrounds:

- $ZH \rightarrow vvcc, WH \rightarrow lvcc, and ZH \rightarrow llcc$
- at least one c tagged jet

Analysis strategy validated in VW (\rightarrow cq) and VZ(\rightarrow cc̄) channels:

• good agreement with SM

Upper limits:

- $\sigma \times BR < 26 (31^{+12}_{-8})$ SM at 95% CL (full Run 2 data)
- |k_c| < 8.5 (12.4) at 95% CL

CMS results (2016 data only): JHEP03 (2020) 131

95% C.L. limit on $\mu_{_{\text{VH(cc)}}}$

15

$H \rightarrow H\gamma$

Mainly driven by $H \rightarrow \gamma \gamma^*$, with contribution from $H \rightarrow Z \gamma$

Fit to lly invariant mass to distinguish signal from non-resonant background:

- $m_{II} < 30 \text{ GeV}$ to suppress events from Z decay
- dedicated triggers for close-by electrons

ATLAS full Run 2 results:

Evidence for $H \rightarrow ll\gamma$

 $3.2 \sigma \text{ obs} (2.1 \sigma \text{ exp})$

Results also for $H \rightarrow Z\gamma$

$$\circ m_{\rm ll} \sim m_{\rm Z} \circ 2.2 \,\sigma \, \text{obs} \, (1.2 \,\sigma \, \text{exp})$$

CMS results (2016 data only): JHEP 11 (2018) 152

110 115 120 125 130 135 140 145 150 155 160

Phys. Lett. B 819 (2021) 136412

 Σ weights / GeV

– Bkg

₹

10

ATLAS

√s = 13 TeV, 139 fb⁻¹

 $ln(1 + S_{90} / B_{90})$ weighted sum

m_{ny} [GeV]

H decay to invisible particles

Reinterpretation in terms of Higgs couplings with Dark Matter or Higgs exotic decays

Latest results:

- $ZH \rightarrow ll + E_T^{miss}$
- cut on E_T^{miss} significance + fit to BDT discriminant

Results:

- ZH: $B(H \rightarrow inv) < 18\%$ obs (18% exp) at 95% CL
- combination of previous ATLAS analyses (VBF and ttH): B(H \rightarrow inv) < 11% obs. (11% exp.) at 95% CL

CMS results (2016 data only): Phys. Lett. B 793 (2019) 520

ATLAS-CONF-2020-052

17

Combination of Higgs Results

Both ATLAS and CMS presented a combination of their Higgs results at 13 TeV:

- using $\gamma\gamma$, ZZ, WW, $\tau\tau$, bb, and $\mu\mu$ results
- interesting to set limits on anomalous couplings values
- all results in agreement with SM

1.5

Double-Higgs searches

Possibility to directly inspect the Higgs self coupling and the shape of the potential

• cross-section values at 13 TeV from <u>LHC HH WG</u>

ATLAS full Run 2 results: JHEP 07 (2020) 108

$HH \rightarrow bb \ bb$

Largest branching fraction (34%)

Targets both ggF and VBF production mechanisms

- Dominant QCD and top backgrounds estimated in control regions
- Signal extracted through fit to BDT discriminant or m_{4b}

CMS results:

- $\sigma(pp \rightarrow HH \rightarrow 4b) < 3.6 (7.3) \times SM \text{ obs (exp)}$
- $-2.3 < \kappa_{\lambda} < 9.4 \ (-5.0 < \kappa_{\lambda} < 12.0)$
- $-0.1 < \kappa_{2V}^{n} < 2.2 \ (-0.4 < \kappa_{2V}^{n} < 2.5)$

$HH \rightarrow bb \ bb \ (boosted)$

Targets non-resonant VBF HH production to measure κ_{2V}

Boosted topology:

- each $H \rightarrow bb$ candidate reconstructed as a large-radius jet
- multivariate classifier based on graph convolutional networks and mass regression to identify signal events

Leading top and QCD backgrounds estimated in control regions

Results:

• 0.6 < κ_{2V} < 1.4 (obs and exp) at 95% CL

$HH \to bb \ \gamma\gamma$

Small BR but clean final state with good resolution

BDT discriminant and invariant mass categorization to separate signal from main backgrounds:

- $m_{bbyy}^* = m_{bbyy}^* m_{bb}^* m_{yy}^* + 250 \text{ GeV}$
- Fit to $m_{\gamma\gamma}$

Resonant (ggF) and non-resonant (VBF) strategies

Results:

- $\sigma(HH \rightarrow bb\gamma\gamma) < 4.1 (5.5) \times SM \text{ obs (exp)}$
- $-1.5 < \kappa_{\lambda} < 6.7 \text{ obs } (-2.4 < \kappa_{\lambda} < 7.7 \text{ exp})$
- at 95% CL

CMS full Run 2 results: JHEP03 (2021) 257

$\rm HH \rightarrow bb \ \tau\tau$

Compromise between BR and background contamination

Search is optimised for maximum sensitivity to cross-section measurement

At least one $\tau_{_{had}}$ in each event

Signal extracted from fits to multivariate discriminants

Results:

• $\sigma(HH \rightarrow bb\tau\tau) < 4.7 (3.9) \times SM \text{ obs (exp)}$ at 95% CL

CMS results (2016 data only): Phys. Lett. B 778 (2018) 101

Conclusions

Recent Higgs results from ATLAS and CMS using full Run 2 dataset

- golden channels, vector bosons, and third generation fermions established
- effort to explore decays to second generation fermions and rarer final states
- inclusive, fiducial, and STXS measurements
- limits on HH measurements are more stringent and already close to SM expectations

The forthcoming Run 3 will help improving current results and prepare the high-luminosity phase

Higgs Talks in Parallel Sessions

More details in the Higgs talks during parallel sessions:

- Measurement of Higgs differential distributions at the LHC Arun Kumar
- Higgs couplings to fermions and bosons Serhat Ordek
- Probing Higgs couplings to light quarks via Higgs pair production Lina Alasfar
- Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC Juan Rojo
- Higgs rare and exotic decays Miha Muskinja
- Double Higgs production Louis Portales

BACK-UP

Simplified Template Cross-Section (STXS)

Main goals of the STXS framework:

- increase the re-interpretability of the precision H boson measurements
- minimize the theory dependence

This is achieved by defining exclusive kinematic regions in the H boson production phase space.

Simplified Template Cross-Section (STXS)

TXS TWiki

Main goals of the STXS framework:

- increase the re-interpretability of the precision H boson measurements
- minimize the theory dependence

This is achieved by defining exclusive kinematic regions in the H boson production phase space.

 $H \rightarrow ee$

ATLAS produced a search for the Higgs boson decay to pair of electrons:

- the main challenge is given by the small branching ratio (~ 5×10^{-9})
- analysis strategy similar to $H \rightarrow \mu\mu$
 - fit to data in several categories with different signal-to-background ratios
- upper limit on branching fraction:
 - BR (H \rightarrow ee) < 3.6 ×10⁻⁴ (3.5 ×10⁻⁴) obs (exp)

$H \rightarrow ZZ$ - CMS Fiducial Volume Definition

Requirements for the ${ m H} ightarrow 4\ell$ fiducial phase space		
Lepton kinematics and isolation		
Leading lepton $p_{ m T}$	$p_{ m T}>20{ m GeV}$	
Next-to-leading lepton $p_{ m T}$	$p_{ m T}>10{ m GeV}$	
Additional electrons (muons) $p_{ m T}$	$p_{ m T}>7(5){ m GeV}$	
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)	
Sum of scalar $p_{ m T}$ of all stable particles within ${\it \Delta}R < 0.3$ from lepton	$< 0.35 p_{ m T}$	
Event topology		
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above		
Inv. mass of the ${ m Z}_1$ candidate	$40 < m_{ m Z_1} < 120{ m GeV}$	
Inv. mass of the ${ m Z}_2$ candidate	$12 < m_{ m Z_2} < 120{ m GeV}$	
Distance between selected four leptons	${\it \Delta} R(\ell_i,\ell_j)>0.02$ for any $i eq j$	
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{\rm GeV}$	
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$	

$H \rightarrow ZZ$ - ATLAS Fiducial Volume Definition

 Table 3 List of event selection requirements which define the fiducial phase space for the cross-section measurement. SFOC lepton pairs are same-flavour opposite-charge lepton pairs

Leptons and jets		
Leptons	$p_{\rm T} > 5 { m GeV}, \eta < 2.7$	
Jets	$p_{\rm T} > 30 { m GeV}, y < 4.4$	
Lepton selection and pairing		
Lepton kinematics	$p_{\rm T} > 20, 15, 10 { m GeV}$	
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
Event selection (at most one quadruplet per event)		
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $12 \text{ GeV} < m_{34} < 115 \text{ GeV}$	
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$	
Lepton/Jet separation	$\Delta R(\ell_i, jet) > 0.1$	
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs	
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$	
If extra lepton with $p_{\rm T} > 12 {\rm ~GeV}$	Quadruplet with largest matrix element value	

$H \to II\gamma$

Feynman diagrams for $H \rightarrow ll\gamma$ production

