

Theoretical issues of the SM and physics at the TeV scale

Fabio Maltoni Università di Bologna Université catholique de Louvain

PANIC - Lisbon - 2021 - On line

ALMA MATER ST UNIVERSITÀ DI

τορ

τu	DI	ю	RI	JM
I B	OI	C	G	NA

SM@TeV Thanks to all contributors

Status and future prospects of precision computations for Higgs Physics at the LHC	Prof. Fabrizio Caola
Online	13:00 - 13:25
Measurement of Higgs differential distributions at the LHC	Arun Kumar
Online	13:25 - 13:45
Higgs couplings to fermions and bosons (including inclusive cross sections, coupling combine Serhat Ördek	nations, spin/CP measure
Probing Higgs couplings to light quarks via Higgs pair production	Lina Alasfar
Online	14:05 - 14:25
Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC	Juan Rojo 🥝
Online	14:45 - 15:05
Higgs rare and exotic decays at the LHC	Miha Muskinja
Online	15:05 - 15:25
Full NLO QCD corrections to Higgs-pair production in the Standard Model and beyond	Dr Julien Baglio
Online	15:25 - 15:45
Double Higgs production at the LHC	Louis Portales
Online	15:45 - 16:05
Perspectives for Higgs measurements at Future Colliders	Ang Li
Online	16:20 - 16:40
ILC Higgs Physics Potential	Dr Shin-ichi Kawada
Online	16:40 - 17:00
Nailing Higgs Couplings at Future Colliders	Ayan Paul
Online	17:00 - 17:20
Single boson production overview (W, Z, \vee) at the LHC	Mario Pelliccioni
Online	17:20 - 17:40

Status of NNLO QCD corrections for process with one or more jets in the final state at the LHC	João Pires
Online	13:00 - 13:25
V+jets/+heavy flavour production at the LHC	Alexandre Laurier
Online	13:25 - 13:45
Jet substructure and fragmentation (including TOP) at the LHC	Andy Buckley
Online	13:45 - 14:05
Modelling the data at the LHC: status and issues (overview including soft QCD and TOP)	Efe Yazgan
Online	14:05 - 14:25
Status of VBS measurements at the LHC	Shuli
Online	14:40 - 15:00
Four-lepton production in gluon fusion at NLO matched to parton showers	Dr Silvia Ferrario Ravasio
Online	15:00 - 15:20
Precise predictions for photon pair production	Alessandro Broggio
Online	15:20 - 15:40
Multibosons production at the LHC (diboson, triboson)	Oleg Kuprash
Online	15:40 - 16:00
Overview of precision measurements (angular coefficients, charge asymmetry, sin20, mW, etc) Vladislav Shalaev	at the LHC
Top quark Cross sections overview (including re-interpretation) at the LHC	
Online	16:35 - 16:55
Status of single top measurements at the LHC	Víctor Rodríguez Bouza
Online	16:55 - 17:15
Top quark mass measurements at the LHC	Christoph Garbers
Online	17:15 - 17:35
Top quark properties overview (asymmetries, CP violation, spin correlations, FCNC) at the LHC	Dr Jacob Kempster
Online	17:35 - 17:55
Associated productions with top (t+X, tt+X with X=W,Z,×, heavy-flavours, tt) at the LHC	Tomas Dado
Online	17:55 - 18:15

The Standard Model Simplicity

• $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge symmetries.

• Matter is organised in chiral multiplets of the fund. representation.

• The SU(2) x U(1) symmetry is spontaneously broken to U(1)_{EM}.

Yukawa interactions lead to fermion masses, mixing and CP violation.

• Matter+gauge group => Anomaly free

Neutrino masses can be easily accommodated.

Renormalisable = valid to "arbitrary" high scales.

A number of accidental symmetries,

 $U(1)_{I}, U(1)_{R}, SU(2)_{I} \times SU(2)_{R}, SU(N)_{f}, GIM, \dots$

which allow to explain what we see and we don't see in our exps.

The Standard Model Simplicity

PANIC - Lisbon - 2021 - On line

 $\mathscr{L}_{SM}^{(4)} = -\frac{1}{\Delta} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} i D \psi + (y_{ij} \bar{\psi}_L^i \phi \psi_R^j + h.c.) + |D_\mu \phi|^2 - V(\phi)$

• SU(3)_c x SU(2)_L x U(1)_Y gauge symmetries.

• Matter is organised in chiral multiplets of the fund. representation.

• The SU(2) x U(1) symmetry is spontaneously broken to U(1)_{EM}.

Yukawa interactions lead to fermion masses, mixing and CP violation.

• Matter+gauge group => Anomaly free

• Neutrino masses can be easily accommodated.

Renormalisable = valid to "arbitrary" high scales.

A number of accidental symmetries,

 $U(1)_L, U(1)_B, SU(2)_L \times SU(2)_R, SU(N)_f, GIM, \dots$

which allow to explain what we see and we don't see in our exps.

 $\mathscr{L}_{SM}^{(4)} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} i D \psi + (y_{ij} \bar{\psi}_L^i \phi \psi_R^j + h.c.) + |D_{\mu} \phi|^2 - V(\phi)$

 $\mathscr{L}_{SM}^{(4)} = -\frac{1}{\Lambda} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} i D \psi + (y_{ij} \bar{\psi}_L^i \phi \psi_R^j + h.c.) + |D_{\mu} \phi|^2 - V(\phi)$

UCLouvain Fabio Maltoni

$$\mathscr{L}_{SM}^{(4)} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} i D \psi + (y_{ij} \bar{\psi}_L^i \bar{\psi}_L^j \bar{\psi}_L^j$$

Observations:

- No EWBG (Higgs too light, not enough CPV,...)
- No Dark Matter ?
- (g-2)µ ?
- FUV ?

$\phi \psi_R^j + \text{h.c.}) + |D_\mu \phi|^2 - V(\phi)$

} low energy

UCLouvain Fabio Maltoni

$$\mathscr{L}_{SM}^{(4)} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} i D \psi + (y_{ij} \bar{\psi}_L^i \bar{\psi}_L^j \bar{\psi}_L^j$$

Observations:

- No EWBG (Higgs too light, not enough CPV,...)
- No Dark Matter ?
- (g-2)µ ?
- FUV ?

$\phi \psi_R^j + \text{h.c.}) + |D_\mu \phi|^2 - V(\phi)$

- Tangible results of an amazing experimental effort over a 10+ year span, accessing a wide range of final states, each with very different challenges.
- Theory predictions seem adeguate. (The key role of MCs is hidden in this plot).

- Tangible results of an amazing experimental effort over a 10+ year span, accessing a wide range of final states, each with very different challenges.
- Theory predictions seem adeguate. (The key role of MCs is hidden in this plot).
- Comparison with SM predictions shows that we have the necessary theoretical and experimental control to move onto the next phase.

- Tangible results of an amazing experimental effort over a 10+ year span, accessing a wide range of final states, each with very different challenges.
- Theory predictions seem adeguate. (The key role of MCs is hidden in this plot).
- Comparison with SM predictions shows that we have the necessary theoretical and experimental control to move onto the next phase.

Precision observables do not point to any clear deviation either.

The most puzzling experimental "issue" of the SM is that we don't really understand why it works so well...

Whatever New Physics might exist to address the SM theoretical shortcomings, its effects must be "small" so that have gone undetected so far.

The main path ahead is twofold

1] Explore the unexplored

2] Increase the precision of TH and EXP to identify possible deviations.

6

Precision observables do not point to any clear deviation either.

The most puzzling experimental "issue" of the SM is that we don't really understand why it works so well...

Whatever New Physics might exist to address the SM theoretical shortcomings, its effects must be "small" so that have gone undetected so far.

The main path ahead is twofold

1] Explore the unexplored

2] Increase the precision of TH and EXP to identify possible deviations.

 $\begin{array}{|c|c|} \alpha_s(M \\ \Delta \alpha_{hs}^{(5)} \\ M_Z \\ M_Z \\ m_t & [0 \\ m_H \\ \hline M_W \\ \hline m_H \\ \hline M_W \\ \hline \Gamma_W & [\\ BR_W \\ BR_W \\ BR_W \\ BR_W \\ \hline P_{\tau}^{pol} \\ \sin^2 \theta \\ \hline \Gamma_Z & [0 \\ \sigma_h^0 & [r \\ R_\ell^0 \\ A_{FB}^0 \\ \hline A_\ell & (S \\ R_b^0 \\ R_c^0 \\ A_{FB}^0 \\ A_{FB} \\ A_b \\ A_c \\ \hline \sin^2 \theta \\ \sin^2 \theta \\ \hline \end{array}$

	Measurement	Posterior	Prediction	Pull	-3 -2	1 0
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.1177 {\pm} 0.0010 \\ 0.027611 {\pm} 0.000111 \\ 91.1875 {\pm} 0.0021 \\ 172.59 {\pm} 0.45 \\ 125.30 {\pm} 0.13 \end{array}$	0.1179 ± 0.0009 0.027572 ± 0.000106 91.1880 ± 0.0020 172.76 ± 0.44 125.30 ± 0.13	$0.1197 {\pm} 0.0028$ $0.027168 {\pm} 0.000355$ $91.2038 {\pm} 0.0087$ $175.97 {\pm} 1.98$ $112.68 {\pm} 12.89$	-0.7 1.2 -1.8 -1.7 0.98	$lpha_S \left(M_Z^2 ight) \ \Delta lpha_{ m had}^{(5)} \left(M_Z^2 ight) \ m_t \ [{ m GeV}] \ m_H \ [{ m GeV}]$	
[GeV]	$80.379 {\pm} 0.012$	$80.360 {\pm} 0.005$	$80.355 {\pm} 0.006$	1.8	$M_W [\text{GeV}]$	
[GeV]	$2.085{\pm}0.042$	$2.0883 {\pm} 0.0006$	$2.0883 {\pm} 0.0006$	-0.08	M_{Z} [GeV]	
$V \rightarrow had$ $V \rightarrow \ell \nu$	$0.6741 {\pm} 0.0027$ $0.1086 {\pm} 0.0009$	$\begin{array}{c} 0.67486 {\pm} 0.00007 \\ 0.10838 {\pm} 0.00002 \end{array}$	$0.67486 {\pm} 0.00007$ $0.10838 {\pm} 0.00002$	-0.28 0.24	$\Gamma_Z ~[{ m GeV}] \ \sigma^0_{ m had} ~[{ m nb}]$	
$=A_{\ell}$	$0.1465{\pm}0.0033$	$0.1473 {\pm} 0.0004$	$0.1473 {\pm} 0.0005$	-0.23	R_ℓ	
$ heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	$0.2324{\pm}0.0012$	$0.23149 {\pm} 0.00006$	$0.23149 {\pm} 0.00006$	0.91	$A_{FB}^{0,\ell}$ $ppol$	
GeV] ıb]	2.4955 ± 0.0023 41.4802 ± 0.0325 20.7666 ± 0.0247 0.0171 ± 0.0010	2.4945 ± 0.0006 41.4910 ± 0.0076 20.750 ± 0.0080 0.01627 ± 0.00010	2.4943 ± 0.0007 41.4930 ± 0.0080 20.7460 ± 0.0087 0.01626 ± 0.00010	0.50 -0.38 0.79 0.84	$A_{\ell} (SLD)$ A_{c} A_{b} A_{b}	
SLD)	$\begin{array}{c} 0.1513 {\pm} 0.0021 \\ 0.21629 {\pm} 0.00066 \\ 0.1721 {\pm} 0.0030 \\ 0.0992 {\pm} 0.0016 \\ 0.0707 {\pm} 0.0035 \\ 0.923 {\pm} 0.020 \\ 0.670 {\pm} 0.027 \end{array}$	$\begin{array}{c} 0.14727 {\pm} 0.00045 \\ 0.21588 {\pm} 0.00010 \\ 0.17221 {\pm} 0.00005 \\ 0.1032 {\pm} 0.0003 \\ 0.0738 {\pm} 0.0002 \\ 0.93475 {\pm} 0.00004 \\ 0.6679 {\pm} 0.0002 \end{array}$	$\begin{array}{c} 0.14731 {\pm} 0.00047 \\ 0.21587 {\pm} 0.00010 \\ 0.17221 {\pm} 0.00005 \\ 0.10327 {\pm} 0.00033105 \\ 0.0738 {\pm} 0.0002 \\ 0.93475 {\pm} 0.00004 \\ 0.6679 {\pm} 0.0002 \end{array}$	1.9 0.63 -0.04 -2.5 -0.88 -0.59 0.08	$\begin{array}{c c} A_{FB}^{0,c} \\ A_{FB}^{0,b} \\ R_{c}^{0} \\ R_{b}^{0} \\ \sin^{2} \theta_{\text{eff}}^{\ell}(Q_{FB}^{\text{had}}) \\ \sin^{2} \theta_{\text{eff}}^{\text{lept}} (\text{Tev/LHC}) \end{array}$	
$ heta_{ m eff}^{ m lept}(m Tev/LHC)$	$0.23137 {\pm} 0.00022$	0.23149 ± 0.00006	$0.23150 {\pm} 0.00006$	-0.57	HEPfit	$Pull = \frac{O_{exp}}{\sigma_{ex}}$

[Courtesy of De Blas et al., work in progress]

$$i m_f / v$$

$$igm_W g_{\mu
u} = 2i v g_{\mu
u} \cdot m_W^2 / v^2$$

$$g \frac{m_Z}{\cos \theta_W} g_{\mu\nu} = 2i v g_{\mu\nu} \cdot m_Z^2 / v^2$$

Unique mass generation mechanism for fermions and vectors.

		[AT	LAS	2020	L		
ATLAS Pre √s = 13 TeV, 24.5 m _µ = 125.09 GeV	liminary - 139 fb⁻¹ , v_, < 2.5	⊢⊷IT	otal 🕻	Sta	ıt. 💳 S	Syst.	I SI
p _{SM} = 87%	Ϋ́Η'				Total	Stat.	Syst.
ggF γγ	è.			1.03	3 ± 0.11 ($\pm \; 0.08$,	$^{+0.08}_{-0.07}$)
ggF ZZ	eļ 👘			0.94	4 ^{+0.11} _{-0.10} (±0.10,	± 0.04)
ggF WW	÷			1.08	B ^{+0.19} _{-0.18} (±0.11,	± 0.15)
ggF ττ	H ata h			1.02	2 ^{+0.60} _{-0.55} (+0.39 -0.38,	$^{+0.47}_{-0.39}$)
ggF comb.	ė.			1.00) ± 0.07 (± 0.05 ,	± 0.05)
VBF γγ	I ser i			1.3	1 ^{+0.26} _{-0.23} (+0.19 -0.18,	$^{+0.18}_{-0.15})$
VBF ZZ				1.2	5 ^{+0.50} _{-0.41} (+0.48 -0.40,	$^{+0.12}_{-0.08}$)
VBF WW				0.60	-0.36 - 0.34	+0.29 -0.27,	±0.21)
VBF ττ	H inter H			1.1	5 ^{+0.57} _{-0.53} (+0.42 -0.40,	$^{+0.40}_{-0.35}$)
VBF bb		-		— 3.03	3 ^{+1.67} _{-1.62} (+1.63 -1.60,	+0.38 -0.24)
VBF comb.				1.1	5 ^{+0.18} _{-0.17} (±0.13,	$^{+0.12}_{-0.10})$
VH γγ				1.32	2 ^{+0.33} _{-0.30} (+0.31 -0.29,	$^{+0.11}_{-0.09})$
VH ZZ				1.53	3 ^{+1.13} _{-0.92} (+1.10 -0.90,	+0.28 -0.21)
VH bb				1.02	2 ^{+0.18} _{-0.17} (±0.11,	+0.14 -0.12)
VH comb.	I			1.1() ^{+0.16} _{-0.15} (±0.11,	+0.12 -0.10)
ttH+tH γγ	e p			0.90	-0.27 (-0.24)	+0.25 -0.23,	$^{+0.09}_{-0.06}$)
ttH+tH VV	+ 	-		1.72	2 ^{+0.56} _{-0.53} (+0.42 -0.40,	$^{+0.38}_{-0.34}$)
ttH+tH ττ ⊢	÷	-		1.20) ^{+1.07} _{-0.93} (+0.81 -0.74,	$^{+0.70}_{-0.57}$)
ttH+tH bb 🛏				0.79	$9 + 0.60 \\ - 0.59$ (±0.29,	+0.52 -0.51)
<i>ttH+tH</i> comb.	÷.			1.10) ^{+0.21} _{-0.20} (+0.16 -0.15,	+0.14 -0.13)
-2 0	2	2	4		6		8

$$i m_f / v$$

$$igm_W g_{\mu
u} = 2i v g_{\mu
u} \cdot m_W^2 / v^2$$

$$g \frac{m_Z}{\cos \theta_W} g_{\mu\nu} = 2i v g_{\mu\nu} \cdot m_Z^2 / v^2$$

Unique mass generation mechanism for fermions and vectors.

A	TLAS Pr	eliminar	່	Total	Stat		Svet	
√s =	= 13 TeV, 24	.5 - 139 fb ⁻¹		Total	Jiai		<i>y</i> or.	0
	= 125.09 Ge	eV, y _H < 2.	5					
PSM	= 07 /0					Total	Stat.	Syst.
gg	F γγ	e			1.03	±0.11 ($\pm \; 0.08$,	$^{+0.08}_{-0.07}$)
gg	F <i>ZZ</i>	e			0.94	+0.11 -0.10 (± 0.10 ,	± 0.04)
gg	F WW	÷			1.08	+0.19 -0.18 (±0.11,	±0.15)
gg	F ττ	-	1		1.02	+ 0.60 - 0.55 (+0.39 -0.38,	+0.47 -0.39)
gg	F comb.	ę			1.00	± 0.07 ($\pm \; 0.05$,	± 0.05)
VE	BF γγ	H			1.31	+0.26 -0.23 (+0.19 -0.18,	+0.18 -0.15)
VE	3F <i>ZZ</i>	⊢ ■−	9		1.25	+0.50 -0.41 (+0.48 -0.40,	+0.12 -0.08)
VE	BF WW	H			0.60	+0.36 -0.34 (+0.29 -0.27,	±0.21)
VE	3F ττ	-	4		1.15	+0.57 -0.53 (+0.42 -0.40,	$^{+0.40}_{-0.35}$)
VE	3F <i>bb</i>	E	=	-	3 .03	+1.67 -1.62 (+1.63 -1.60,	+0.38 -0.24)
VE	3F comb.	I			1.15	+0.18 -0.17 (±0.13,	+0.12 -0.10)
Vł	Η γγ)		1.32	+0.33 -0.30 (+0.31 -0.29,	+0.11 -0.09)
VH	+ ZZ				1.53	+1.13 -0.92 (+1.10 -0.90,	+0.28 -0.21)
Vł	l bb				1.02	+0.18 -0.17 (±0.11,	+0.14 -0.12)
Vł	d comb.	•			1.10	+0.16 -0.15 (±0.11,	+0.12 -0.10)
ttŀ	I+tH γγ	÷			0.90	+0.27 -0.24 (+0.25 -0.23,	$^{+0.09}_{-0.06}$)
ttŀ	I+tH VV	H H	• •		1.72	+0.56 -0.53	+0.42 -0.40,	$^{+0.38}_{-0.34}$)
ttF	l+tH ττ	-			1.20	+1.07 -0.93 (+0.81 -0.74,	$^{+0.70}_{-0.57}$)
tt⊦	l+tH bb	Here in the second seco			0.79	$^{+0.60}_{-0.59}$ ($\pm \; 0.29$,	+0.52 -0.51)
ttŀ	<i>I+tH</i> comb.	÷			1.10	+0.21 -0.20 (+0.16 -0.15,	+0.14 -0.13)
2	0		2	Λ		6		Q
-2	0		2	4		0		0

[ATLAS 2020]

PANIC - Lisbon - 2021 - On line

V(H

 $V^{\rm SM}$

V(H

 $V^{\rm SM}$

$$-3iv \cdot m_h^2/v^2$$

V(H

 V^{SM}

$$\begin{aligned} T(\Phi) &= \frac{m_H^2}{2} H^2 + \lambda_3 v H^3 + \frac{\lambda_4}{4} H^4 + \dots \\ T(\Phi) &= -\mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \implies \begin{cases} v^2 &= \mu^2 / \lambda \\ m_H^2 &= 2\lambda v^2 \end{cases} \quad \begin{cases} \lambda_3^{\rm SM} &= \lambda \\ \lambda_4^{\rm SM} &= \lambda \end{cases} \end{aligned}$$

 $-3 iv \cdot m_h^2/v^2$

$$\begin{aligned} f(\Phi) &= \frac{m_H^2}{2} H^2 + \lambda_3 v H^3 + \frac{\lambda_4}{4} H^4 + \dots \\ f(\Phi) &= -\mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \implies \begin{cases} v^2 &= \mu^2 / \lambda \\ m_H^2 &= 2\lambda v^2 \end{cases} \quad \begin{cases} \lambda_3^{\rm SM} &= \lambda \\ \lambda_4^{\rm SM} &= \lambda \end{cases} \end{aligned}$$

UCLouvain Fabio Maltoni

Reicher

One of the flagship measurements foreseen for the HL-LHC. [Di Micco et al., 1910.00012]

The precision path Two questions

1. What is the expected experimental precision on key SM measurements at the TeV scale and a reasonable goal for the corresponding TH predictions? Are we there yet?

2. How to frame and interpret our results to maximise the sensitivity to New Physics?

Towards the HL-LHC

- 20-fold data sample
- 1/5 statistical uncertainties
- Comparable reduction of systematic uncertainties?
- Definition of tails and access to rare processes

$$\frac{\kappa_i^2\cdot\kappa_f^2}{\kappa_H^2}$$

 \rightarrow

Currently limits on k_{λ} from H and HH are comparable and will stay so at the HL-LHC. Borderline sensitivity to say something about EW baryogenesis...

Precision calculations for the LHC Status

UCLouvain Fabio Maltoni

Precision calculations for the LHC The path

"Rules of thumb at the LHC":

- Predictions must be calculated at least to **NLO QCD** to control the central value at 10-20%.
- **N2LO QCD** provides control at 5% level and on the uncertainties stabilizing \bullet the perturbative expansion.
- **N2LO QCD** is expected to be of the same order as NLO EW $\alpha_S^2 \sim \alpha_W$, yet • **EW** corrections grow large and negative at high energies (Sudakov logs).
- **N3LO QCD** is the frontier of precision aiming ~1% of MHO uncertainties.
- **Resummation** Universal, all-order terms that are potentially large for some \bullet observables (logs or 1PI loops for propagators) need to be resummed. They might refer to global or non-global observables. Resummation leads to mprovements in precision and accuracy.

Precision calculations for the LHC N3LO revolution

[Anastasiou et al., 1602.00695]

Table 2: Gluon fusion Higgs boson production cross sections and uncertainties as a function of the pp collider energy.

\sqrt{s}	σ	δ (theory)	$\delta(ext{PDF})$	$\delta(\alpha_s)$
13 TeV	√ 48.61 pb	+2.08 pb +4.27% -3.15 pb (-6.49%)	$\left(\pm 0.89 \mathrm{pb} (\pm 1.85\%)\right)$	+1.24 pb $(+2.59%)$ $-1.26 pb$ $(+2.62%)$
14 TeV	√ 54.72 pb	+2.35 pb $+4.28%-3.54pb -6.46\%$	$\left(\pm 1.00 \text{pb} (\pm 1.85\%)\right)$	+1.40 pb $+2.60%$ $-2.62%$
27 TeV	V 146.65 pb	+6.65 pb +4.53% -9.44 pb +4.53%	$\left(\pm 2.81 \text{pb} \left(\pm 1.95\%\right)\right)$	+3.88 pb $(+2.69%)$ $-3.82 pb$ $(-2.64%)$

• Drell-Yan now available [Duhr, Dulat and Mistelberger, 2001.07717] [Duhr, Dulat and Mistelberger, 2007.13313]

Collider Energy / TeV

δ(EW)

 Very significant reduction of MHO uncertainties.

 Differential distributions are available.

 $\delta(\text{PDF}+\alpha_s)$

60

 δ (PDF–TH)

80

• Uncertainty budget points to PDF as the main source of error.

40

 $\delta(1/m_t)$

 $\delta(t,b,c)$

 δ (scale)

20

 $\delta_i/\delta_{\rm f}$

Precision calculations for the LHC Fully exclusive simulations

the 2012 Sakurai Prize for Theoretical Particle Physics by the American Physical Society, along with the late Guido Altarelli.

Brvan Webber (left) and

Torbjörn Sjöstrand (right).

Credit: Lund University, T

Siöstrand

PANIC - Lisbon - 2021 - On line

[Mazzitelli et al. , 2012.14267]

Precision calculations for the LHC Fully exclusive simulations

the 2012 Sakurai Prize for Theoretical Particle Physics by the American Physical Society, along with the late Guido Altarelli.

Brvan Webber (left) and

Torbjörn Sjöstrand (right).

Credit: Lund University, T

Siöstrand

PANIC - Lisbon - 2021 - On line

Precision calculations for the LHC Status: PDF's

- Complete N3LO PDF's evolution not available yet. Non-singlet evolution available at 4 loops already.
- Error budget with many sources. MHO uncertainties yet to be included in the final assessment.
- Reaching 1% will be very challenging.
- Room for a breakthrough from lattice?

PANIC - Lisbon - 2021 - On line

- Very fast progress in conceptual as well as technical aspects.
- Tight and consolidated community, with high momentum.
- Considering the status of 20 years ago seems clear that NNLO will be completed and N3LO will start to become available for $2\rightarrow 2$ (see 3-loop $q\bar{q} \rightarrow \gamma\gamma$ results)
- Mixed QCD-EW being included.

- Very fast progress in conceptual as well as technical aspects.
- Tight and consolidated community, with high momentum.
- Considering the status of 20 years ago seems clear that NNLO will be completed and N3LO will start to become available for $2\rightarrow 2$ (see 3-loop $q\bar{q} \rightarrow \gamma\gamma$ results)
- Mixed QCD-EW being included.

 A variety of approaches available, both analytical and numerical.

 Analytically historically matching the FO accuracy.

 NNLO+PS will be the new standard. (N3LO+PS already being explored)

 Having a NLL and beyond PS, is being explored now. To be seen.

• Not clear whether one can reach 1%.

- Very fast progress in conceptual as well as technical aspects.
- Tight and consolidated community, with high momentum.
- Considering the status of 20 years ago seems clear that NNLO will be completed and N3LO will start to become available for $2 \rightarrow 2$ (see 3-loop $q\bar{q} \rightarrow \gamma\gamma$ results)
- Mixed QCD-EW being included.

- A variety of approaches available, both analytical and numerical.
- Analytically historically matching the FO accuracy.
- NNLO+PS will be the new standard. (N3LO+PS already being explored)
- Having a NLL and beyond PS, is being explored now. To be seen.
- Not clear whether one can reach 1%.

- Complete N3LO PDF's evolution not available yet.
- PDF determination from fitting large set of data. Final quality depends on measurements.
- Error budget with many sources. MHO uncertainties yet to be included in the final assessment.
- Reaching 1% will be very challenging.
- Room for a breakthrough from lattice.

The precision path Two questions

1. What is the expected experimental precision on key SM measurements at the TeV scale and a reasonable goal for the corresponding TH predictions? Are we there yet?

2. How to frame and interpret our results to maximise the sensitivity to New Physics?

Three key properties of the SM:

- Mass generation with gauge invariance
- Unitarity (up to a predefined Λ)
- Perturbativity/renormalizability

Three key properties of the SM:

- Mass generation with gauge invariance
- Unitarity (up to a predefined Λ)
- Perturbativity/renormalizability

Is it possible to "minimally" deform the SM in a way to encompass "all" New Physics and without losing any of the above?

Three key properties of the SM:

- Mass generation with gauge invariance
- Unitarity (up to a predefined Λ)
- Perturbativity/renormalizability

Is it possible to "minimally" deform the SM in a way to encompass "all" New Physics and without losing any of the above?

Rattazzi® adapted

UCLouvain Fabio Maltoni

Rattazzi® adapted

UCLouvain Fabio Maltoni

 $\mathscr{L}^{(4)}$ $\mathscr{L}^{(2)}$ \mathscr{L} + $m_{v} = 0$ $U(1)_L^3 \times U(1)_B$ GIM $Y_u, Y_d, Y_l \Rightarrow$ Flayor & \mathcal{P} Rattazzi® adapted

Rattazzi® adapted

Rattazzi® adapted

$$\frac{1}{\Lambda} \mathscr{L}^{(5)} + \frac{1}{\Lambda^2} \mathscr{L}^{(6)} + \dots$$

$$U(\Lambda)_L \to m_\nu \neq 0 \qquad \Rightarrow \Lambda \ge 10^{14}$$
Flavor $\Rightarrow \mu \to e\gamma, \Delta m_K, \dots$

$$CP' \Rightarrow edm's \qquad \Rightarrow \Lambda \ge 10^6$$
Dipoles $\Rightarrow (g - 2)_\mu$

$$U(1)_B \Rightarrow p \to \pi^0 e^+ \qquad \Rightarrow \Lambda \ge 10^{15}$$

$$\Rightarrow \Lambda \ge 10^{15}$$

Λ_{UV}	

One can satisfy all the previous requirements, by building an EFT on top of the SM that respects the gauge symmetries:

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}}^{(4)} + \frac{1}{\Lambda^2} \sum_{i}^{N_6} c_i \mathcal{O}_i^{(6)} + \frac{1}{\Lambda^4} \sum_{j}^{N_8} \mathcal{O}_j^{(6)}$$

With the "only" assumption that all new states are heavier than energy probed by the experiment $\sqrt{s} < \Lambda$.

The theory is renormalizable order by order in $1/\Lambda$, perturbative computations can be consistently performed at any order, and the theory is predictive, i.e., well defined patterns of deviations are allowed, that can be further limited by adding assumptions from the UV. Operators can lead to larger effects at high energy (for different reasons).

- $C_i \mathcal{O}_i^{(8)}$

Energy helps precision

The master equation of an EFT approach has three key elements:

$$\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \frac{1}{\Lambda^2} \sum_i a_{n,i}^{(6)}(\mu) c_i^{(6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

The master equation of an EFT approach has three key elements:

$$\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \frac{1}{\Lambda^2} \sum_i a_{n,i}^{(6)}(\mu) c_i^{(6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

Most precise/accurate experimental measurements with uncertainties and correlations

The master equation of an EFT approach has three key elements:

$$^{(6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

The master equation of an EFT approach has three key elements:

- $a_{n,i}^{(6)}(\mu) c_i^{(6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda 4}\right)$

Most precise EFT predictions

The master equation of an EFT approach has three key elements:

$$^{(6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

increased NP Sensitivity

Most precise EFT predictions

The master equation of an EFT approach has three key elements:

$$^{6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

increased NP Sensitivity

Most precise EFT predictions

The master equation of an EFT approach has three key elements:

$$^{6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

Most precise EFT predictions

increased NP Sensitivity \Rightarrow increased UV identification power

The way of SMEFT A simple approach

EFT bounds translate to constraints on parameters of UV models

Simplest case: single-field extensions of the SM

Mass limits (in TeV)

[Ellis et al. 2012.02779]

A powerful approach Is this easy?

It's as exciting as challenging. Pattern of deformations enter many observables in a correlated way.

Needs to manage complexity, uncertainties and correlations.

Needs coordinated work among analysis groups in collaborations traditionally working separately (top, Higgs, EW,...)

Needs coordinated work between theorists and experimentalists (model dependence, validity, interpretations, matching to the UV).

A new paradigm: shifting value from "the best single measurement" to "the best combinable measurement"!

A powerful approach What are we going to learn?

[Peskin, ICHEP2020]

Global fits First explorations: EWPO+H+EW+Top

- Already now and without a dedicated experimental effort there is considerable information that can be used to set limits:
- Fitmaker [J. Ellis, M. Madigan, K. Mimasu, V. Sanz, T. You 2012.02779]
- SMEFIT [J. Either, G. Magni, F. M., L. Mantani, E. Nocera, J. Rojo, E. Slade, E. Vryonidou, C. Zhang, 2105.00006]
- SFitter [Biekötter, Corbett, Plehn, 2018] + [I. Brivio, S. Bruggisser, F. M., R. Moutafis, T. Plehn, E. Vryonidou, S. Westhoff, C. Zhang, 1910.03606] (separated)
- HEPfit [de Blas, et al. 2019]
- 30+ operators, linear and/or quadratic fits, Higgs/Top/EW at LHC, WW at LEP and EWPO.

Global fits Workflow

Methodology

EleniVryonidou®

Data 317 data points: Top: ttbar, single-top, associated top production, distributions. Higgs production and decay, differential distributions, STXS. Diboson production, distributions Global EW/Top/Higgs SMEFT fit Fit results can be used to bound specific UV complete models

New data can be straightforwardly added

Output

Global fits Operators vs processes

Global EW(PO)+H+Top **Examples**

[Ellis et al. 2012.02779]

34 operators, $SU(2)^2 \times SU(3)^3$

EWPO fitted, 341 data points

PANIC - Lisbon - 2021 - On line

36 operators, $SU(2)^2 \times SU(3)^3$

EWPO fixed, 317 data points

UCLouvain Fabio Maltoni

Global EW(PO)+H+Top Examples

[Ellis et al. 2012.02779]

34 operators, $SU(2)^2 \times SU(3)^3$

EWPO fitted, 341 data points

PANIC - Lisbon - 2021 - On line

36 operators, $SU(2)^2 \times SU(3)^3$

EWPO fixed, 317 data points

UCLouvain Fabio Maltoni

Global fits: now vs future EWPO+EW+Higgs

PANIC - Lisbon - 2021 - On line

The SM at the TeV Conclusions

- SM at the TeV scale is in an extremely good shape. No signs of significant deviations have been detected.
- Tremendous improvements in the accuracy/precision of SM predictions have been achieved, opening a new realm of opportunities.
- The LHC campaign of precision measurements is entering a new phase measuring at unprecedented precision a large number of channels and accessing for the first time rare final states.
- A far reaching approach to interpreting SM measurements is to constrain the SM interactions at the TeV scale (and beyond) by employing the SMEFT, maximising sensitivity to heavy new physics.
- Considerable theory effort going on, being matched by the experimental work.
- EFT's are also being used to gauge sensitivity to NP at future colliders.
- Busy future ahead with even more integrated TH/EXP activities.

