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Radiation

Irradiated cell

Progeny of Irradiated cell
Dead cell

Bystander cell

Progeny of Bystander cell

Normal cell

Progeny of Normal cell

Figure1. Radiobiology study scheme.
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Figure4. Cell survival rate for each dose.
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Figure4. Cell survival rate for each dose.
Comparisson between High-LET and Low-LET.

%




\ dose rate.

erent RBE
2nding on the

D xray
D particle

structure.

pare
o
X

» To study the biological effect:
dose distribution map at &

Survival fractions

paticle X- ray

!

Figure4. Cell survival rate for each dose.
() Comparisson between High-LET and Low-LET.






Scintillation fiber array

Signal (fiber bundle to PM detector)

oroject. The skin cell

op of the optical fibres.

introduced by the

/ Figure6. Cell culture plates.



Figure”. Inside of the detector. The
volume that receives the optical
fibres is shown (the figure shows a
cross-section of the detector).










s_\\.

Figure?. MARTA DAQ with 64
channels.

More information at M.Santo's poster "Characterization and

functional test of a micro dosimeter of scintillated optical fibers"






Electron beam Electron beam
(pencil 2.28 MeV) Optical (pencil 2.28 MeV) @)
fibers

Detector collimator

«Q

@ Figure10. Fiber test bench used in LOMAC Figurell. Scheme illustrating the experimental

labbratory. In the image it is possible to see the protocol. O
system used to place the optical fibres side by
ide.
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() Figure12. Signal captured in the detector.
Experimental measurements
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CROSSTALK SIMULATIONS

Signal in the PMT

W1 fiber

+ 2 fibers
3 fibers

A 4 fibers

Position of the stimulated fiber (mm)

Figure1 3. Signal captured in the detector. Not considering Cherenkov
radiation. In the graph the x axis corresponds to the position of thé
stimulated optical fibre.

More information at M.Santo's poster "Characterization and
functional test of a micro dosimeter of scintillated optical fibers"






the optic

such a way a
the optical fibres are a
same plane.
. The optical fibres are glued to the
bottom half of the frame.
5l The glue is then left to dry.
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‘mThe most important aspect of the optical fibre Optical fibre

/ movement

N

assembly is that the optical fibres present are
)

juxtaposed and all in the same plane. _
Optical fibre

movement
® The error that can be accepted in the construction
of the optical fibre arrays has been calculated

\ using Monte Carlo simulations. Proton beam (pencil beam, 13MeV)

)

Proton beam (pencil beam, 13MeV)

P Simulations

* _Inthese simulations an optical fibre array of 64 Figurel4. Scheme illustrating the experimental
CYibres was placed in air and the irradiated with a protocol.

(Proton beam (13 MeV). Fibers are place in the

beam's Bragg Peak.
1 */ (The central fibre was picked and moved.

‘ 0O)
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Figurel5. Ratio between the energy absorbed by the Figurel6. Ratio between the energy absorbed by the
~optical fibre in the central position and the other optical fibre in the central position and the other positions.
pos{it\ions. Simulations for 1 mm optical fibers. Simulations for 0.5 mm optical fibers. ;




Pinhole

Objective

Figure17. Confocal
microscopy scheme.
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Figure19. Result of the measurements
made with confocal microscopy. The
middle image shows that the opticall  ~

fibres are not all in the same plane. |






/ igure20. Front view of the
détector. Figure21. Back view of the

Figure22. Inside view of the detecton

detector. The beam entrance The volume that receives the optical
: I
is shown. fibres is shown. |




Figure24. System developed to
guarantee that the connector is

Figure23. Inside view of the detector. The
PMT ( in brown) and the connector (in

low) is shown. placed with precision in the
detector.







PMT Volume

Optical fibre

oroton beam with
m diameter.
aced 50 cm away from the
detector

Detector made of POM plastic
Optical fibers with a polystyrene
core and a PMMA cladding
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SIMULATIONS - SHIELDING

Energy depositted inside the detector by a 13,8 MeV proton beam

Figure25. Energy deposited inside the detector by a proton beam. The figure shows a cross
section of the detector. Simulations performed with FLUKA.
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Figure26. Energy deposited by the proton beam in the optical fibres. Simulations
/r\ performed with FLUKA.



Photons in the detectors

"detector_fotoes.dat" =

w0
c
8
8
£
o

Detector

Figure27. Signal for each optical fiber.



roton beams.

res planes

® Construct the detector with two optical fibre planes
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