

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Radiotherapy Types

- Radiotherapy is one of the existing medical applications to **deal with tumors**. It uses **ionizing radiation** to destroy cells in the volume;
- Radiotherapy can be divided in two main groups: **Onventional Radiotherapy** which uses **photons** (X-rays and γ -rays) or electrons;
- **2 Heavy charged particles Radiotherapy** which uses **protons** or ions with atomic number > 1.

Figure 1:Schematic of conventional radiotherapy.

Figure 2: Proton therapy versus conventional radiotherapy radiation dose as function of tissue depth.

• Conventional Radiotherapy (CRT):

- **1** Broad dose deposition profile; 2 Multiple beams increase ratio of dose in healthy to cancer
- cells; 3 Large deposition of dose before and after the tumor.

• Proton Therapy (PT):

- **1** Dose profile peaks at Bragg Peak;
- Minimal dose deposition after Bragg Peak;
- **3** Pencil-like therapy.

Reducing the risk of proton therapy with prompt gamma

José Miguel Patuleia Venâncio

FCT Fundação para a Ciência e a Tecnologia

Department of Physics, Instituto Superior Técnico

Dose Profile Monitoring

- Bragg Peak needs to be accurately known, its position affects the location of the delivered dose; • The aim is to monitor the Bragg Peak position in vivo conditions;
- Simulations show the possibility to achieve resolutions in the order of millimeter [1].

Figure 3:Schematic of proton therapy - proton beam and γ ejection.

Detection

- Each pixel is composed by a crystal coupled to a light sensor;
- The collimator is a series of high density material blades isolating each crystal.

Figure 5:Schematic of preliminary system composed by the SiPM, oscilloscope and computer.

Geometry

• The detector is placed orthogonal to the beam path; • Pixelization and collimators allow spatial resolution in the beam direction.

Figure 4:Schematic of the GSO crystal, SiPM and DAQ system.

Instrumentation

- The solution has to be capable of handling a large number of sensors;
- The Baseline scintillator is BGO crystals;
- The main candidate for light sensor is SiPM;
- It is expected to have a large volume of scintillators and a number of pixels O(100);
- Techniques to reduce noise and enhance dynamic range are being pursued;

LISBOA UNIVERSIDADE DE LISBOA

UNIVERSIDADE Ð COIMBRA

What was made

• Temporary solution based in oscilloscope to study the requirements of the system and possible

simplifications. • Oscilloscope based setup, figure 5;

• Preliminary data acquisition from the oscilloscope to the computer;

• Temporary data processing made using ROOT.

What comes next?

• Using the system with radioactive sources, study its behaviour and then compare the performance of a simpler system, scalable to a large number of channels;

• It will probably be based in the ROC ASIC chips from the OMEGA group with which LIP has experience.

Acknowledgements

Patrícia, Pedro and the LIP group dedicated to this field of study, lead by Paulo Crespo, were all crucial to the development of this innovative project. I am extremely grateful for my advisors invaluable direction and mentorship in this short period. Moreover I am very thankful towards FCT for providing me with this research opportunity and the accompanying funding with the reference SFRH/BD/150791/2020 and to the project funding for the LIP group with the reference CERN/FIS-TEC/0019/2019.

References

[1] Paulo Crespo, Patricia Cambraia Lopes, Hugo Simões, Rui Ferreira Marques, Katia Parodic, and Dennis R Schaart.

Simulation of proton range monitoring in an anthropomorphic phantom t using multi-slat collimators and time-of-flight detection of prompt-gamma quanta.

Physica Medica, 54:1–14, 10 2018.

Contact Information

• LIP: https://www.lip.pt • Email: venancio@lip.pt