

Measurements of ¹⁶O fragmentation cross sections on C target with the FOOT apparatus

Marco Toppi, on behalf of the **FOOT collaboration**

Of Target

22nd edition PANIC Lisbon Portugal

Particles and Nuclei International Conference

PANIC conference – 08/09/2021

1

Outline

- FOOT (Fragmentation Of Target) experiment:
 - Motivations: Particle Therapy and Radioprotection in space
 - Strategy for fragmentation cross section measurements
 - Experimental set-up
 - Preliminary cross section measurement for the process ¹⁶O+C @ 400 MeV/u
 - Conclusions

Of Target

Particle Therapy

Disadvantages: fragmentation of projectile and target nuclei

- Particle Therapy (PT) uses proton or heavy ions beams to treat deep-seated solid tumors.
- Advantages wrt conventional radiotherapy:
 - 1. Maximum dose released inside the tumor: Bragg Peak
 - 2. High **RBE** $RBE = \frac{D_{\gamma}}{D_{part}}$

Target fragments: Low kinetic energy and low range

LOCAL RELEASE

Fragments angular and energetic distributions

Marco Toppi

- Z>2 fragments ~ same velocity of the ¹⁶O ions. Emitted in forward direction
- Protons & neutrons are the most abundant fragments: wide kinetic energy and angular distributions

Target fragments: Low kinetic energy and low range LOCAL RELEASE **PANIC** conference – 08/09/2021

Fragmentation consequences

Marco Toppi

- Fragmentation processes modify the delivered dose map
- This effect strongly depends on the mass and the energy of the ion beam and on the target involved in the interaction

Fragmentation consequences

- Treatment plans for PT are not yet able to include the fragmentation contribution with the accuracy (3%) required for radiotherapy
- This is due to the lack of experimental data, and in particular of fragmentation cross section

Marco Toppi

- Fragmentation processes modify the delivered dose map
- This effect strongly depends on the mass and the energy of the ion beam and on the target involved in the interaction

Fragmentation consequences

- Treatment plans for PT are not yet able to include the fragmentation contribution with the accuracy (3%) required for radiotherapy
- This is due to the lack of experimental data, and in particular of fragmentation cross section

Marco Toppi

- Fragmentation processes modify the delivered dose map
- This effect strongly depends on the mass and the energy of the ion beam and on the target involved in the interaction

Target fragmentation contribution

Depth

> The particles produced in target fragmentation are one of the causes contributing (~10%) to the increase of proton RBE

Marco Toppi

Can be of interest in proton-therapy:

$$p + x \to p + \sum_{i} x_{i}$$

 $T_{x_{i}} << T_{p}$

Target fragments have high **RBE** values

In clinical practice protons RBE = 1.1

PANIC conference – 08/09/2021

 $\left(\frac{dE}{dx}\right)_x >> \left(\frac{dE}{dx}\right)$

Fragmentation Of Target (FOOT) experiment

Particle Therapy

- Projectile fragmentation of ^{4}He , ^{12}C , ^{16}O beams in the energy range 100÷500 MeV/u interaction with main constituent of human body (H, C, O, Ca)
- ${}^{12}C$ and ${}^{16}O$ target fragmentation induced by 50÷250 MeV proton beams

Marco Toppi

Measurements of target and projectile fragmentation cross section relevant for **PT** and for **Radio Protection in Space** applications.

Radioprotection in space

 Same PT ions (plus ions up to ^{56}Fe) interacting with hydrogenrich targets, of interest for shieldings, at the increased energy range of 100÷800 MeV/u

Strategy for target fragmentation measurement

Target fragments have a very **low energy** and so a very **low range** that make the detection really difficult.

With this strategy the fragmentation of **tissue-like ion beams** (mainly C and O) impinging on a hydrogen enriched target are studied moving from the challenging measurement of target fragmentation to the easier case of projectile fragmentation

Marco Toppi

Target fragments: low energy and short range

Beam fragments: higher energy and longer range By applying a Lorentz boost it is possible to switch from the laboratory frame to the "patient frame"

FOOT detector

The FOOT detector is a movable set-up to fit the experimental rooms dimensions of different PT treatment centers / experimental facility (CNAO, HIT, GSI) with ions beams.

Marco Toppi

PANIC conference – 08/09/2021

- Fixed target experiment with magnetic spectrometer for the identification of fragments, optimitezed fot Z>2 fragments
- Emulsion setup: another setup exploiting emusion chambers is optimized for Z<3 fragments \rightarrow see Adele Lauria 's talk

Required performances for cross section precision < 10%

- $\sigma(p)/p \sim 5\%$
- $\sigma(E_k)/E_k \sim 2\%$
- $\sigma(\Delta E)/\Delta E \sim 3 10\%$
- $\sigma(TOF)/TOF \sim 100 ps$

Data acquisition at GSI in 2019

 Preliminary data taking @ GSI in 2019 with a partial FOOT experimental set-up composed of Start Counter, Beam Monitor and Tof-Wall detector with a beam of ¹⁶O at 400 MeV/u meant for calibration

Run	Type	Target	Events
2210	calibration	no	20463
2211	$\operatorname{calibration}$	no	62782
2212	calibration	no	116349
2242	$\operatorname{calibration}$	no	202728
2239	physics	\mathbf{C}	20821
2240	physics	\mathbf{C}	20004
2241	physics	\mathbf{C}	20041
2251	physics	\mathbf{C}	6863

target

Marco Toppi

 Very few statistics (~67k events) collected for physics runs with fragmentation of the ¹⁶O beam of 400 MeV/u on a C

 Preliminary charge-changing cross sections integrated over the angular TW acceptance for the process ¹⁶O (400 MeV/u)+C

Data acquisition at GSI in 2019

 Preliminary data taking @ GSI in 2019 with a partial FOOT experimental set-up composed of Start Counter, Beam Monitor and Tof-Wall detector with a beam of ¹⁶O at 400 MeV/u meant for calibration

Run	Type	Target	Events
2210	calibration	no	20463
2211	$\operatorname{calibration}$	no	62782
2212	calibration	no	116349
2242	calibration	no	202728
2239	physics	\mathbf{C}	20821
2240	physics	\mathbf{C}	20004
2241	physics	\mathbf{C}	20041
2251	physics	\mathbf{C}	6863

- target

Marco Toppi

 Very few statistics (~67k events) collected for physics runs with fragmentation of the ¹⁶O beam of 400 MeV/u on a C

 Preliminary charge-changing cross sections integrated over the angular TW acceptance for the process ¹⁶O (400 MeV/u)+C

Start Counter and Beam monitor

- The Beam Monitor (BM) is a **drift chamber** of 12 wire layers (3 drift cells per layer)
- Wire layers alternated in x and y view
- Rectangular cell: 16 mm × 10 mm
- The BM operates at \simeq 0.9 bar with a 80/20% gas mixture of Ar/CO2
- It provide the **direction** and **impinging point** of the beam ions on the target

Marco Toppi

- Coupled to 48 SiPM (8 channel readout)
- Layout optimized to maximize the light collection

It provides:

- 1. The start of the TOF masurements
- 2. The trigger signal
- 3. The measurement of the incoming ion flux

Both detector projected to minimize the out of target fragmentation probability

14

Tof-Wall detector: charge ID of the fragments

- The **Tof-Wall** detector (TW) is composed of two layers of 20 scintillator bars (0.3 cm thick, 2 cm wide, 44 cm long) arranged orthogonally with a 40 x 40 cm^2 active area
- Each of two edges of the TW bars is coupled to 4 SiPM with a 3 x 3 cm^2 active area and 25 μm microcell pitch.

Marco Toppi

TW provides:

- 1. Deposited energy ΔE
- 2. Time of flight **TOF** (using the t_0 provides by ST)
- 3. Hit **positions**

Fragment charge Z identification performed using a Bethe-Bloch parametrization as a function of TOF for each Z

Cross section measurement strategy

¹⁶O beam @ 400 MeV/nucleon on a 5 mm Carbo

$$\sigma(Z) = \int_{E_{min}}^{E_{max}} \int_{0}^{\Delta\theta} \left(\frac{\partial^2\sigma}{\partial\theta\partial E_{kin}}\right) d\theta dE_{kin} = \frac{N_{fr}}{N_{prim} \cdot I}$$

$$N_{TG} = \frac{\rho \cdot dx \cdot N_A}{A}$$

$$\begin{cases} \rho = 1.83 \text{ g/cm}^3 \\ dx = 0.5 \text{ cm} \\ A = 12.0107 \end{cases}$$

1. Align FOOT detector at GSI and select angular acceptance for cross section integration;

- 2. Compute **MC efficiencies** for each fragment;
- 3. Estimate fragmentation out of target for background subtraction;
- 4. Extract the **fragments yields** from Z identification TW algorithms;
- 5. Systematics study.

Marco Toppi

n TG		Run	Type	Target	Events
		2210	calibration	no	20463
$_{\alpha\alpha}(Z)$		2211	$\operatorname{calibration}$	no	62782
$\frac{lg(\mathbf{Z})}{V}$		2212	$\operatorname{calibration}$	no	116349
$V_{TG} \cdot \epsilon(Z)$		2242	$\operatorname{calibration}$	no	202728
		2239	physics	\mathbf{C}	20821
		2240	physics	\mathbf{C}	20004
		2241	physics	С	20041

2251

physics

Very low statistics and no detectors for mass identification \rightarrow cross section integrated in angular and kinetic energy interval is feasible

С

6863

MC studies: efficiencies and background rejection

Developed a detailed FLUKA simulation with the geometry of the

Numerator: asking for a recons fragment with TW matched to origin in target with production E_{kin} production in the range [10

Denominator: asking for prima in target with an angle $< 5.7^{\circ}$ a range [100, 800] MeV/u

Marco Toppi

e set-up used at GSI 2019 data taking		D <i>m</i> .		
	Element	Efficiency		
structed and Z identified				
primary fragments with	He	91.92 ± 0		
angle $< 5.7^{\circ}$ and	Li	85.38 ± 0		
00, 800] MeV/u	Be	88.32 ± 0		
ary fragmanta praducad	В	88.75 ± 0		
nd E_{L} production in the	\mathbf{C}	91.13 ± 0		
	Ν	95.88 ± 0		

MC studies: efficiencies and background rejection

Developed a detailed FLUKA simulation with the geometry of the

Numerator: asking for a recons fragment with TW matched to origin in target with production E_{kin} production in the range [10

Denominator: asking for prima in target with an angle $< 5.7^{\circ}$ a range [100, 800] MeV/u

Marco Toppi

a act up used at CCI 0010 data taking		
e set-up used at GSI 2019 data taking		
	Element	Efficiency
structed and Z identified		
primary fragments with	${ m He}$	91.92 ± 0
angle $< 5.7^{\circ}$ and	Li	85.38 ± 0
00, 800] MeV/u	\mathbf{Be}	88.32 ± 0
	В	88.75 ± 0
ary tragments produced	\mathbf{C}	91.13 ± 0
ind L _{kin} production in the	Ν	95.88 ± 0

Out of target primary fragmentation is a not negligible background to be subtracted (~30%) of the signal from MC studies). Most of it coming from air

Marco Toppi

Results for the charge-changing cross section for the interaction of a beam of ¹⁶O at 400 MeV/u on a 0.5 cm C target:

Element	$\sigma_{frag} \pm \Delta_{stat} \pm \Delta_{sys}[mbarn]$	$\Delta_{stat}/\sigma_{frag}$	$\Delta_{sys}/\sigma_{frag}$	$\sigma_{MC}[mbarn]$	
He	$625 \pm 22 \pm 21$	3.6%	3.6%	621	As expected statistical er
Li	$85 \pm 10 \pm 5$	11.9%	5.6%	67	dominant w
Be	$31 \pm 10 \pm 3$	31.8%	8.8%	33	systematic
В	$70 \pm 10 \pm 5$	14.9%	7.3%	38	uncertainty
\mathbf{C}	$113 \pm 12 \pm 3$	10.9%	2.7%	81	is around 10
Ν	$101 \pm 14 \pm 5$	13.7%	4.8%	105	

Systematic uncertanties estimated from:

- 1.Different selection criteria of the projection of the beam direction on TG;
- 2.Quality of the **BM reconstructed tracks**;
- 3.Charge reconstruction algorithm in the TW fragments' identification

Results for the charge-changing cross section for the interaction of a beam of ¹⁶O at 400 MeV/u on a 0.5 cm C target:

Element	$\sigma_{frag} \pm \Delta_{stat} \pm \Delta_{sys}[mbarn]$	$\Delta_{stat}/\sigma_{frag}$	$\Delta_{sys}/\sigma_{frag}$	$\sigma_{MC}[mbarn]$	
He	$625 \pm 22 \pm 21$	3.6%	3.6%	621	A st
Li	$85 \pm 10 \pm 5$	11.9%	5.6%	67	d
Be	$31 \pm 10 \pm 3$	31.8%	8.8%	33	S
В	$70 \pm 10 \pm 5$	14.9%	7.3%	38	u
\mathbf{C}	$113 \pm 12 \pm 3$	10.9%	2.7%	81	is
Ν	$101 \pm 14 \pm 5$	13.7%	4.8%	105	

$$\sigma(Z) = \frac{1}{N_{TG} \cdot \epsilon(Z)} \left[\frac{N_{TG}(Z)}{N_{TG}^{prim}} - \frac{N_{noTG}(Z)}{N_{noTG}^{prim}} \right]$$
$$N_{TG} = \frac{\rho \cdot dx \cdot N_A}{A} \qquad \begin{cases} \rho = 1.83 \text{ g/cm}^3 \\ dx = 0.5 \text{ cm} \\ A = 12.0107 \end{cases}$$
Marco Toppi PA

s expected the tatistical error is ominant wrt the vstematic ncertainty and it around 10%

Nice agreement between the measured cross section and the ones reconstructed with the same algorithms in the MC simulation developed in **FLUKA**

Conclusions

- The FOOT experiment is designed for the measurement of the fragmentation differential cross sections of interest in Particle Therapy and radio protection in space with an accuracy better than 10%
- The final set up is almost completed (Inner Tracker (IT) + Magnet + Calo still in development)
- **First preliminary cross section measu rement** of a ¹⁶O beam at 400 MeV/u with a partial setup, integrated in the detector acceptance
- A data taking performed in july 2021 in GSI provided 40 M events for ¹⁶O beam at 200 and 400 MeV/u impinging on C and C_2H_4
- A new data taking will be performed at CNAO (Centro Nazionale di Adroterapia Oncologica) in November 2021 witha beam of ¹²C at 200 and 400 MeV/u impinging on targets of C and C_2H_4

Spare Slides

Charge identification and mixing

It is possible to correlate in a charge mixing matrix the reconstructed charge to the real one (for MC truth), thanks to which it is possible to observe when the charge identification algorithm assigns a fragment to a wrong Z.

Marco Toppi

Available statistics and event selection

Run	Typ	be	Tar	get	Events			
2210	cali	bration	no		20463			
2211	cali	bration	no		62782			
2212	cali	bration	no		116349			
2242	cali	bration	no		202728	6	0000	
2239	phy	sics	\mathbf{C}		20821			
2240	phy	rsics	\mathbf{C}		20004			
2241	phy	rsics	\mathbf{C}		20041	5	0000	
2251	phy	rsics	\mathbf{C}		6863			
						_		
Elem	ent	Yields	bkg	Yi	$elds_{signal}$	- 4	0000	
N_{prin}	ı	31660		615	516	-		
He		$484~\pm$	22	108	37 ± 33	3	0000	
Li		89 ± 9)	152	2 ± 12			
Be		73 ± 9)	77	± 9			
В		88 ± 9)	136	5 ± 12	2	0000	
\mathbf{C}		$156 \pm$	13	231	± 16			
Ν		$207~\pm$	14	248	3 ± 16			

Marco Toppi

Resolution TOF and Eloss

Marco Toppi

Energy resolution flat $\sim 5\%$

 ΔE (MeV)

MC studies: efficiencies and background rejection

 E_{kin} production in the range [100, 800] MeV/u

5.7° and E_{kin} production in the range [100, 800] MeV/u

- **Numerator:** asking for a reconstructed and Z identified fragment with TW matched to primary fragments with origin in target with production angle $< 5.7^{\circ}$ and
- **Denominator:** asking for primary fragments produced in target with an angle <

Data: background subtraction

produced in the TG (signal) and primary fragmentation out of target (background)

Marco Toppi

The fragments yields extracted by the TW detector mix primary fragmentation

• The count of primary ions of the beam interacting with the target is provided by the **Start Counter (minimum bias trigger)** Requiring events with single tracks in BM with projection on the target within [-1,1] cm and $\theta < 5.7^{\circ}$ for all the emitted fragments we got the total number of primaries selected for the cross section measurement.

Systematic uncertainties

Marco Toppi

