

FRAGMENTATION MEASUREMENTS WITH THE EMULSION SPECTROMETER OF THE FOOT EXPERIMENT

Adele Lauria University of Napoli "Federico II" and INFN Napoli

on behalf of the FOOT Collaboration

OUTLOOK

Particle therapy

- Particle therapy vs. radiotherapy
- Target fragmentation

FOOT experiment

- Inverse kinematic approach
- Double target strategy
- The detector

The emulsion detector

- Nuclear emulsions
- Controlled fading

The data analysis for charge identification of the fragments

- Cut based analysis
- Principal component analysis
- Results

PARTICLE THERAPY: WHY?

Comparison ions vs. photon:

- ✓ Maximum dose release at the end, in the Bragg peak
- ✓ Possibility to control the depth dose release according to the beam energy
- ✓ Depth tumors
- ✓ Large areas
- ✓ Lower dose to healthy tissues

PARTICLE THERAPY: FRAGMENTATION OF THE TARGET

The nuclear fragmentation of the target and beam particles is an open issue.

- Proton beam (Target fragmentation):
 - Small range fragments (~tens of μm)
 - Missing experimental data for heavy fragments having the greatest contribution to the dose
 - Increase of biological damage (~10%) in the entrance channel
- Charged particles (Beam and target fragmentation):
 - Fragments have the same velocity of the beam, but the lower mass allows longer range producing tail beyond the Bragg peak
 - Scarce validation data for ¹²C clinical beam
 - New beams (4He and 16O) to be studied

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

Measurements of nuclear fragmentation cross sections useful to develop a new generation of biologically oriented Treatment Planning Systems for ions therapy

• The experiment:

- FragmentatiOn Of the Target
- Funded by INFN since 2017
- https://pandora.infn.it/public/3d8535: FOOT Conceptual Design Report (June 2017)

• AIM: characterize the target fragmentation in terms of

- Fragments production **cross sections** (at level of 5%)
- Fragments **energy spectra** $d\sigma/dE$ (energy resolution ~1 MeV/u)
- Charge ID (at the level of 2-3%)
- **Isotopic ID** (at the level of 5%)

• HOW:

- **Data taking** for beams at therapeutic energies and for space radioprotection:
 - + 250 MeV/n (700 MeV/n) for He ions
 - + 350 MeV/n (700 MeV/n) for C ions
 - ◆ 400 MeV/n (700 MeV/n) for O ion
- Target simulating the human tissue (H, C, O)

• EXPERIMENTAL STRATEGY

- Inverse kinematic geometry
- Experimental apparatus: electronic detector and emulsion spectrometer

INVERSE KINEMATIC GEOMETRY

- Protons @ E_{kin} = 200 MeV (β ~0.6) on a "patient" (98% C, O, and H nucleus) can be replaced by ¹⁶O, ¹²C ion beams ($E_{kin} \sim 200 \text{ MeV/n} \beta \sim 0.6$) impinging on a **target made of protons** $(C \rightarrow H)$
- by applying the Lorentz transformation (well known β) it is possible to switch from the laboratory to the patient frame

Range (µm)	LET (keV/µm)	E (MeV)	Fragment
2.3	983	1.0	¹⁵ O
2.5	925	1.0	¹⁵ N
3.6	1137	2.0	^{14}N
5.4	951	3.0	^{13}C
6.2	912	3.8	${}^{12}C$
7.0	878	4.6	¹¹ C
9.9	643	5.4	^{10}B
15.7	400	6.4	⁸ Be
26.7	215	6.8	⁶ Li
48.5	77	6.0	⁴ He
38.8	89	4.7	³ He
68.9	14	2.5	^{2}H

P (200 MeV) on O₂: range of fragments

Requirements: the fragments direction must be well measured in the lab frame to obtain the correct energy in the patient frame

DOUBLE TARGET STRATEGY

- H target: very difficult to realize
- Use **twin targets** of **C** and **polyethylene** $(C_2H_4)_n$
- Obtain the fragmentation results on H target from the **difference**

FOOT EXPERIMENT: THE DETECTOR

- A table top detector (<2 m long)
- Electronic detector⁽¹⁾ optimized for fragments with $Z \ge 3$ and angular acceptance ±10°
- Emulsion detector for the detection of light charged fragments at large angle (up to **70°**) $\frac{\Delta(dE)}{dE} \approx 2\%$ $\frac{\Delta Ekin}{Ekin} \approx 2\%$ $\frac{\Delta p}{2} \approx 5\%$ $\Delta TOF \approx 100 ps$
- Required performances:

(1) See Marco Toppi's talk: "Measurements of ¹⁶O fragmentation cross sections on C target with the FOOT apparatus"⁸

THE EMULSION SPECTROMETER: DATA TAKING

✓ GSI (March 2019):

- First data taking with ¹⁶O (200, 400 MeV/n)
- 4 emulsion detectors exposed (C and C₂H₄ target)
- Data analysis presented on ¹⁶O @200 MeV/n beam on C and C₂H₄ target

✓ GSI (February 2020):

- Second data taking with ¹²C (700 MeV/n)
- 2 emulsion detectors exposed (C and C₂H₄ target)

THE EMULSION SPECTROMETER: OVERALL

• Detector based on the concept of **Emulsion Cloud Chamber** (ECC)

PARTICLE TRAJECTORY RECONSTRUCTION

Silver grains produced by charged particles are recognised by automated microscopes as aligned clusters of dark pixels and associated to reconstruct the particle trajectory

PARTICLE TRAJECTORY RECONSTRUCTION

¹⁶O (200 MeV/n) passing through the nuclear emulsion

- 100 mm

^{16}O (200 MeV/n) on $C_{2}H_{4}$ target: Vertexing reconstruction

- The grain density is proportional to the energy loss by primary ionization
- For highly ionizing particles, a saturation effect occurs due to the limited range of the grain density, thus preventing the charge measurement
- It is possible to extend the dynamical range of the emulsion response with a controlled fading that partially or totally erase the tracks, depending on their ionization.

STRUCTURE OF THE SECTION 2 (S2)

Emulsions will have a **different thermal treatment** according to its position in the elementary cell:

- **R0**: not thermally treated, sensitive to all particles
- **R1@28°C**, sensitive to Z >1
- **R2@34°C**, sensitive to Z >2
- **R3@36°C**, sensitive to Z >3

For each track the following variables are evaluated:

P tanθ: tangent of the track inclination w.r.t.the Z axis

NRx: number of base-tracks belonging to the volume-track for each thermal treatment Rx, $x \in \{0,1,2,3\}$

Volume VRx: for each base-track, a variable named "volume" is defined as the sum of the pixel brightness

ANALYSIS FOR CHARGE ID

- A multidimensional technique, well known in the field of pattern recognition
- Four different variables are created: VP_xyz = $a \cdot \langle VRx \rangle + b \cdot \langle VRy \rangle + c \cdot \langle VRz \rangle$ (x, y, z $\in \{0, 1, 2, 3\}$)
- ▶The variable VP_123 is used if ⟨VR1⟩, ⟨VR2⟩ and ⟨VR3⟩ are available.
 Otherwise one of the others VP_xyz applies

```
\begin{split} & \text{VRO1} = \alpha_{01} \text{VRO} + \beta_{01} \text{VR1} \\ & \text{VRO12} = \alpha_{012} \text{VRO} + \beta_{012} \text{VR1} + \gamma_{012} \text{VR2} \\ & \text{VR123} = \alpha_{123} \text{VR1} + \beta_{123} \text{VR2} + \gamma_{123} \text{VR3} \\ & \text{VRO123} = \alpha_{0123} \text{VRO} + \beta_{0123} \text{VR1} + \gamma_{0123} \text{VR2} + \delta_{01234} \text{VR2} \end{split}
```


VR123 = α_{123} **VR1 +** β_{123} **VR2 +** γ_{123} **VR3**

ANALYSIS BY THE PRINCIPAL COMPONENTS METHOD

16 O (200 MeV/n) on C target

Z	% in total charged				
	Result	System atic err	Gauss Param err	Statistic err	
1	67%	2%	/	1%	
2	22%	3%	0%	1%	
3	8%	2%	0%	2%	
>3	3%	0%	0%	3%	

¹⁶ O (200 MeV/n) on C_2H_4 target

Z	% in total charged				
	Result	System atic err	Gauss Param err	Statistic err	
1	70%	5%	/	1%	
2	16%	2%	0%	1%	
3	10%	2%	0%	2%	
>3	4%	1%	0%	3%	

- An overview of the FOOT experiment to investigate on target fragmentation in particle therapy is given
- Description of the controlled fading technique, based on different thermal treatments, adopted for the nuclear emulsion detector to extend the dynamical range of the emulsions to distinguish fragments charge (Z=1, Z=2, Z=3, Z≥4 and cosmic rays)
- The charge of the fragments obtained by the exposing a C and C₂H₄ target to a ¹⁶O (200 MeV/n) beam are measured by two complementary methods: a cut-based analysis and the Principal Component Analysis
- The charge was assigned for 99.4% of tracks reconstructed in section
 2, dedicated to the charge id

THANK YOU

20