Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay¹

Stefano Vergani, N. Kamp, A. Diaz, C.A. Argüelles, J.M. Conrad, M.H. Shaevitz, M.A. Uchida

Evidences for Neutrinos Beyond Standard Model

Left: LSND excess suggested there could be more than 3 neutrinos.

Right: MiniBooNE (MB) reported an v_e -like excess in tension with other global fits with 3 ν plus 1 sterile O(1 eV).

Fitting MB Excess

Simulated

process from

the creation of

HNLs to their

decay inside

MB detector

Dirt Beryllium **MiniBooNE** Air (MiniBooNE **Detector Hall)**

• We evaluate the oscillation parameters from a • We remove from the excess the 3+1 global fits' results. The remaining excess is fitted with our

$sin^2(2\theta_{ue}) = 6.9 \times 10^{-4}$. Global fit without MB $sin^2 2\theta_{ue}$

global fit (w/o MB) for ν_e appearance and

disappearance: $\Delta m^2 = 1.3 \ eV^2$

Best fit region for the model 3+1 only with oscillation data. 90,95, and 99% regions in red, green, and blue.

 Δm^2 , $\sin^2(2\theta)$ = {1.3 eV², 6.9 ×10⁻⁴} Δm^2 , $\sin^2(2\theta)$ } = {1.3 eV², 6.9 ×10⁻⁴ 1500 -1.0 E_{ν}^{QE} [GeV] cosθ

dipole model in energy and angular distribution.

 E_{ν}^{QE} (left) and cos ϑ (right) distribution for a point in the 3+1+N model.

New Model: the Heavy Neutral Lepton Dipole

- A model 3+1+ N_i is proposed, where j = 1,2,3 are sterile ν of size eV, keV, and MeV. Only $N_3 \equiv N$ can be seen in a SBL experiment.
- HNL Dipole Model couples right-handed N, γ , and left-handed ν .
- γ from HNL's decay are simulated for different dipole strengths and masses.

$$\mathcal{L} \supset \mathcal{L}_{SM} + \sum_{i=1}^{3} \bar{\mathcal{N}}_{j} (i \partial \!\!\!/ - M_{j}) \mathcal{N}_{j} + \sum_{i=1}^{3} (d_{i,j} \bar{\nu}_{i} \sigma_{\mu\nu} F^{\mu\nu} \mathcal{N}_{j} + h.c.)$$

Lagrangian of the Dipole Model

HNL production channels (left and middle), decay (right)

Results and conclusion

- Removing MB data relieves tension between appearance and disappearance data in global fits.
- Dipole model 3+1+N gives a good fit to the energy and angular distribution of the MB excess, and it can be tested on MINERvA, NOvA, T2K, and IceCube.

Preferred regions to explain the MB excess.

Parameters	χ^2/dof			
$(\sin^2 2\theta, d, m_N)$			3 + 1	
	E_{ν}^{QE}	$\cos \theta$	E_{ν}^{QE}	$\cos \theta$
(0.30, 3.1, 376)			30.5/10	
(0.69, 2.8, 376)	7.9/8		27.3/10	
(2.00, 5.6, 35)	20.2/8	36.7/18	27.6/10	40.8/20
(0, 0, 0)	34.1/10	99.4/20	same	same

 χ^2 /dof values for 3+1 and 3+1+N -decay models.