PANIC2021 Conference

Contribution ID: 270

Type: Poster

Quasi-Dirac neutrinos in the linear seesaw model

Tuesday 7 September 2021 11:58 (1 minute)

We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of $M_N < M_W$.

Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to oppositesign dilepton ratio, $R_{\ell\ell}$, can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular values of $R_{\ell\ell}$ are controlled by the width of the QD neutrino and its mass splitting, the latter being equal to the light-neutrino mass m_{ν} in the LSM scenario. The current upper bound on m_{ν_1} together with the projected sensitivities of current and future $|U_{N\ell}|^2$ experimental measurements, set stringent constraints on our lowscale QD mass regime. Some experimental prospects of testing the model by LHC displaced vertex searches are also discussed.

Primary author: Mr MONSALVEZ POZO, Kevin (IFIC (CSIC-UV))

Co-authors: ARBELAEZ, Carolina (Universidad Tecnica Federico Santa Maria and Centro Científico Tecnologico de Valparaiso CCTVal); DIB, Claudio (Universidad Tecnica Federico Santa Maria and Centro Científico Tecnologico de Valparaiso CCTVal); SCHMIDT, Ivan (Universidad Tecnica Federico Santa Maria and Centro Científico Tecnologico de Valparaiso CCTVal)

Presenter: Mr MONSALVEZ POZO, Kevin (IFIC (CSIC-UV))

Session Classification: Poster Session I

Track Classification: Neutrino physics