

Study of tau-neutrino production at the CERN-SPS

Radu Dobre (ISS - Romania) for the DsTau Collaboration

- Discovered by the DONuT collaboration (2000); cross-. section measurement uncertainty >50%
- One of the least studied particles in the Standard Model •
- Oscillated v_: OPERA, Super-K, IceCube .

Physics motivation - reduce the uncertainty for:

- Testing Lepton Universality .
- Neutrino oscillation experiments .
- High energy astrophysical v. .

- Reduce the v_{-} cross-section measurement uncertainty, the D_c differential production cross section needs to be determined (DsTau Experiment)
- DS momentum cannot be directly determined \rightarrow momentum reconstruction by topological variables:

The variables were put in a neural network to determine momentum resolution (~20%) \rightarrow x.

reconstruction.

 $\Delta p/p = 20\%$

References

- https://na65.web.cern.ch .
- DsTau Collaboration, DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS. IHEP01. (2020) 033 CERN-SPSC-2021-020 / SPSC-SR-295 1/06/2021
- Osamu Sato, for the DsTau Collaboration: Study of tau neutrino production with nuclear emulsion at CERN SPS (https://indico.cern.ch/event/982783/contributions/4362340/)

Photo of detector setu

Uniform irradiation on detector surface

GRAINE (B

taken from the CERN SPS beamline

Nuclear emulsion detector

section

DsTau experiment physics goal

Reduce the systematic

Pave the way for future

uncertainty from

v experiments

50% to 10%

- 3D tracking device with good spatial resolution (50nm)
- Comprises silver halide crystals (200nm in diameter) The trajectory of a charged particle that passes through the emulsion is shown as a black track and can be observed under an optical microscope

DsTau detector structure

- The DsTau detector module is made up of 131 emulsion films, 10 tungsten plates and 25 lead plates
- Reading of emulsion films with the Hyper Track Selector at Nagoya University; scanning speed of ~0.5m²/h.
- A new scanning system (HTS-2) is under development

Test beams and pilot run

2016 test run	2017 test run	2018 pilot run					
Test for detector structure	Improvement of detector structure	1/10th of the full experiment					
For the 2018 pilot run, all	Improvement of beam exposure	$50\% {\scriptstyle \rightarrow} 30\%$ uncertainty					
mulsions were made nanually. An automated	scheme	DONuT update ντ cross section					
system for emulsion film production was manufacture of the second se Second second sec							

Data analysis

- 3.4253301×10⁷ injected protons were analyzed
- 2.72120×10⁵ proton interactions detected (1.47236×10⁵ interactions in tungsten)
- 159 events with charm pair (115 events from tungsten interactions)

		Observed		Expected				
		Vertices in tungsten	147236	155135				
				Signal	Background			
		Double decay topology	115	80.1±19.2	12.7±5.0			
>	Flight length of charged charm candidates (red plot) and neutral charm candidates (green plot)		Charged 1 prong Data PLUKA MC (signal) + + 400 6000 6000	28- 28- 28- 28- 28- 15- 10- 10- 10- 10- 10- 10- 10- 10- 10- 10	MC (signal)			
	• 2021 and 2022							
	physics runs – ν_{τ} production measurement by detecting 1000 D _s $\rightarrow \tau \rightarrow X$ events from 2.3×10 ⁸							
		proton inte New detec	2021 run 194 0.3	2 run -0.1 nucettainty				
		30 units			96 500 1000 19 Number of det	soo 2000 at ected events		
RA	P	Proton						