

Search for Dark Matter signatures from cosmic-ray antinuclei with the GAPS experiment

Alessio Tiberio on behalf of the GAPS collaboration

GAPS scientific goals

 Different kinematics between cosmic rays produced in dark matter annihilation or decay and standard astrophysical processes ("secondary production")

- Expected **antideuteron/antihelium** signal from DM annihilation/decay is orders of magnitude above the astrophysical background at low energies
- GAPS is designed to detect a possible DM signal from antideuteron and antihelium below 250 MeV/n
- GAPS will also perform a precise measurement of **antiproton** spectrum in an unexplored low-energy range

The GAPS experiment

- General Antiparticle Spectrometer
- Balloon-borne experiment
 - three long duration balloon flights from Antarctica planned
 - First flight in 2022/2023 austral summer
- Experimental apparatus composed of a time-offlight (ToF) system surrounding a tracker
- **ToF:** plastic scintillators (Eljen EJ-200) read with silicon photomultipliers (SiPM)
- **Tracker**: 10 planes of 12x12 Si(Li) detectors
- An oscillating heat pipe system is used to cool down Si(Li) detectors to -40°C

Detection principle

- The antinucleus slows-down and form an exotic atom in the tracker
- The exotic atom de-excites emitting characteristic X-rays
- The antinucleus annihilates with the nucleus of the exotic atom, emitting a "star" of secondary particles (pions, protons)
- **ToF:** velocity, direction, dE/dx, trigger and veto
- Tracker: stopping depth, dE/dx, charged particles multiplicity, X-ray identification, annihilation vertex reconstruction

Antinucleus identification

- The identification of the antinucleus is performed using:
 - velocity of the primary antinucleus
 - energy deposits of the primary antinucleus
 - depth in detector material crossed before annihilation
 - multiplicity of charged annihilation products
 - X-ray from exotic atom de-excitation

Time of Flight

- Development led by UCLA
- Plastic scintillators: Eljen EJ-200
- Paddles dimensions:
 1.5-1.8 m x 16 cm x 6.35 mm
- Each paddle read with **SiPMs** on both sides
 - Hamamatsu S13360-6050VE
 - provide position measurement
- Two gain channels
 - High gain: timing measurements
 - Low gain: **trigger** (based on β, energy deposits and # of hits)

a

~~~~

~~~~

- Custom DAQ hardware developed
 - Waveform sampling by high-speed DRS4 ASIC

Si(Li) detectors

- Large area Si(Li) detectors
 - developed by Columbia, MIT, ISAS/JAXA, produced by Shimadzu Corp.
- ~10 cm circular detectors, segmented in 8 strips with equal area and 2.5 mm thick
 - A module is made of 2x2 detectors
 - Modules are arranged in a 6x6 array in each plane
 - 10 planes vertically spaced by 10 cm

- Custom ASIC for energy deposit measurement
 - ♦ high dynamic range: ~10 keV → ~100 MeV
- Energy resolution **<4 keV** (for 60 keV X-rays)
 - needed to discriminate X-rays from different antinucleui and different target atoms

JINST 14 (2019) P10009.

NIM A 997 (2021) 165015

Tracker cooling system

- Design led by ISAS/JAXA
- Passive cooling system → **low power** consumption
- Hybrid system between oscillating heat pipe (OHP) and thermosiphon
- OHP used for the first time in a balloon flight
- Scaled down prototype successfully tested at Ft.
 Sumner in 2019

NASA AKA CINFN GR

J. Astron. Inst. 06 (2017) 1740006

Applied Thermal Engineering 141 (2018) 20

Antideuteron sensitivity

Predicted antideuteron signal from dark matter decay or annihilation ~2 orders of magnitude above astrophysical background below 250 MeV/n

- Even a single antideuteron would point to new physics
- GAPS sensitivity will be 1-2 orders of magnitude below existing BESS limit

Dark Matter models

- GAPS will be sensitive to a wide range of DM models:
 - generic 70 GeV WIMP annihilation (explains antiproton excess and γ from Galactic center)
 - dark matter gravitino decay
 - extra dimensions
 - dark photons
 - heavy DM models with Sommerfeld enhancement
- Observed antiproton flux constraints antideuteron signal predictions

Antiproton spectrum

- Precision measurement of antiproton spectrum in an unexplored low energy region
- ~1000 antiprotons expected for each balloon flight
- Sensitive to light dark matter, evaporating primordial black holes, and Galactic and solar propagation models

Cuoco+(2016), Cui+(2016), Cui+ (2018), Cuoco+ (2019), Cholis+ (2019)

- Dark Matter antiproton signal: **~10-30%** of the secondary production
- Observed antiproton excess puts **constraints** to antideuteron flux predictions

Antihelium sensitivity

 Could confirm antihelium candidates observed by AMS-02

Event reconstruction

Astroparticle Physics 133 (2021) 102640

- The annihilation event is reconstructed using a custom algorithm
 - primary track is identified from the first ToF hits
 - a scan is done along the primary track to find the best annihilation vertex and secondary tracks candidates
 - the annihilation vertex is reconstructed as the point that minimizes its distance from the secondary tracks

• Another algorithm based on Hough transform was also developed, but it exhibits worse performances

Reconstruction performance

14

Summary

- GAPS is the first experiment dedicated to the observation of cosmic antiprotons, antideuterons, and antihelium-3 at energies below 250 MeV/n
- The main scientific goals of the experiment are:
 - First detection of a cosmic antideuteron, thank to the GAPS sensitivity in an essentially backgroung-free region
 - Precision measurement of the antiproton spectrum, searching for dark matter signatures and to put constraints on DM and propagation models
 - Detect cosmic antihelium-3, in order to confirm AMS-02 candidates with a complementary measurement
- Hardware integration already started, a functional prototype is being assembled and will be tested at the end of 2021
- First flight is planned in late 2022