
This work has been accomplished at the Institute for Theoretical Particle Physics and
Cosmology (TTK) at RWTH Aachen University in Aachen through the Graduate School
Program “Particle and Astroparticle physics in the Light of the LHC” financed by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Cover
Compilation of own photograph and an image of a fixie bicycle from eluxemagazine.com.

May 24, 2015
This work is available under the Creative Commons Attribution 4.0 International
(CC BY 4.0) License.
See for more information: http://creativecommons.org/licenses/by/4.0/legalcode

.

Bound state formation effects for 
dark matter beyond WIMPs

Jan Heisig

work in progress with Mathias Garny



Outline

Beyond WIMPs: 
Conversion-driven freeze out (CDFO)

Bound state formation effects for CDFO



Beyond WIMPs: 
Conversion-driven freeze out (CDFO)



Dark matter freeze-out (simplest case)
[Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, 

Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

1

�ann := n�h�viann annihilation rate

1

dn�

dt
+ 3Hn� = �h�viann

⇣
n2
� � neq

�
2
⌘

X

X

SM

SM

:  efficient

:  inefficient

�ann � H

�ann ⌧ H

�

!"! !"# $"! $"# %"! %"#

!$&

!$'

!$%

!$!

!(

!&

!'

Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di⇥erent values of the interaction rate between the visible sector and DM
particles ⇥ in each case. The arrows indicate the e⇥ect of increasing the rate � of the two processes.
In the left panel x = m⇥/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n⇥/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ⇤ O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ⇥ ⇥⇥, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� ⌅ exp(�m�/T ). The comoving number density of DM particles ⇥ then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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Slightly more complex: coannihilations

X1 X2
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Coannihilations = additional annihilation channels:

[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Conversion-driven freeze-out / co-scattering
[Garny, JH, Lülf,  Vogl 1705.09292; D'Agnolo, Pappadopulo, Ruderman 1705.08450]
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Where is it relevant?
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Fig. 13: Feynman diagrams for the direct detection of dark matter in our model at the lowest order in perturbation
theory.

Integrating out the heavy degrees of freedom �1 and S1, we can obtain a rough estimate for the
Wilson coefficient of the rightmost diagram, finding that y� . 1. This result implies that direct detection
constraints have an impact on our parameter space, and hence a complete 1-loop calculation taking into
account all possible diagrams and interference effects is incumbent and is left for future work 12.
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Fig. 14: Parameter space satisfying ⌦h2 = 0.12. The solid black line denotes the boundary between the standard
freeze-out and conversion-driven freeze-out (CDFO) regime. The thin green curves denote contours of constant
coupling y�. We also overlay the envelope of the missing energy searches (blue region) discussed in the previous
section.). Left panel: Plane spanned by m�0

and (m�1
� m�0

) while fixing mS1
= 1000GeV. Right panel:

Plane spanned by mS1
and (m�1

� m�0
) while fixing m�0

= 800GeV. We choose �L = 0.6mS1
/TeV and

�L = 0.5mS1
/TeV. The vertical grey dashed line in the left panel indicates the fixed mass value in the right panel

and vice versa.

In figure 14 we display contours of constant y� satisfying the correct relic abundance, ⌦h2 '

0.12 [49], computed with MICROMEGAS [12]. We consider two slices of the parameter space. In the
left panel we fix mS1

= 1000GeV and �L = 0.6,�L = 0.5 (second benchmark point in table 3),
which renders it safe from the leptoquark searches described in section 1.4. In the right panel we fix
m�0

= 800GeV and mS1
while keeping �L = 0.6mS1

/TeV and �L = 0.5mS1
/TeV consistent with

the flavour anomalies.
12Such a calculation was carried out for a similar model [48], however in that case S1 is a t-channel mediator (instead of

s-channel), and there is no �1 particle.

15

Simplified t-channel 
mediator models:
[e.g. C. Arina et al.; 2010.07559] 

Leptoquark model:
[Bélanger et al.; 2002.12220, 4] 

Closing in on t-channel simplified dark matter models

Figure 2: Top row: Parameter space regions compatible with the standard freeze-out mechanism and the observed relic
density [22], shown in the (mY ,mX) plane for the F3S_uR (left), S3M_uR (centre) and F3V_uR (right) models. The gray shading
indicates the � value needed to satisfy the relic density constraint. The yellow hatched region is excluded by the SI XENON1T
bounds [23] (DD SI), the green hatched one by gamma-ray line searches from Fermi-LAT [24] and HESS [25] (ID), and the cyan
hatched one by the SD PICO bounds [26] (DD SD). Moreover, for the F3V_uR model, indirect detection bounds are extracted from
Fermi-LAT in dSphs searches [27] (ID), when one relies on dark matter annihilations in the u Ñu final state [9]. Bottom row: Same
as for the top row but in the (r * 1,mX) plane where r í mY _mX . This allows us to highlight better the co-annihilation regime.

mediator decay leads to a significantly hard jet. In contrast,
SRs dedicated to final states featuring four jets give a bet-
ter outcome in the compressed regime. While these regions
select events exhibiting a larger number of jets, the associ-
ated transverse momentum requirements are milder than in
the two-jet case, and thus more e�cient in more compressed
setups in which decay and radiation jets are softer.

4. Cosmological bounds
For all three models, we sample the three-dimensional

parameter space with MICROMEGAS and require that the
dark matter candidate makes up 100% of the measured dark
matter abundance, ⌦h2Planck = 0.12 [22]. The thermally av-
eraged dark matter annihilation cross section Í�vÎ (v being
the relative velocity between two dark matter particles) is
d-wave-suppressed for the real scalar case [28, 29, 30, 31,
32] and p-wave-suppressed for Majorana dark matter [30,
33]. NLO corrections in the relic density computation might
therefore be relevant [31, 18]. To account for these correc-
tions, we include the loop-induced XX ô gg and XX ô
�� processes2, and the three-bodyXX ô uR ÑuRg andXX ô
uR ÑuR� annihilations that could be potentially enhanced by

2XX ô �Z annihilations should be included as well, as the associ-
ated matrix element is of the same perturbative order as the XX ô ��
one. However, we have found out that the di-photon contribution to Í�vÎ is

virtual internal bremsstrahlung (VIB). For our predictions,
we use the analytic expressions provided in refs. [29, 30,
34] that we have validated with MADDM. While di�erent
choices of dark matter interactions (in terms of the flavour
and chirality of the involved SM quarks) would lead to a dif-
ferent interplay between the subprocesses contributing to the
relic density, it will always be possible to find viable solu-
tions for the � parameter.

Through our scans of the model parameter spaces, we
single out regions where the elastic dark matter scattering
cross section o� protons is compatible with both the spin-
independent (SI) and spin-dependent (SD) exclusion lim-
its at 90% confidence level (CL) from the XENON1T [23]
and PICO [26] experiments, our predictions relying on NLO
cross sections [35] to properly model the impact of QCD ra-
diation. In principle, running coupling e�ect should also be
included [36]. The latter would lead to tighter exclusion lim-
its, slightly augmenting their sensitivity for large dark matter
masses. We have however omitted them from our compu-
tations, although we have verified that they do not impact
our conclusions. We do not expect the obtained direct de-
tection bounds to sensibly change for di�erent choices of

subdominant to the XX ô gg one in the entire parameter space. We have
therefore not accounted for annihilations into a �Z system, that is itself
subleading with respect to XX ô �� .

C. Arina et al.: Preprint submitted to Elsevier Page 4 of 8
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Co-annihilation without chemical equilibrium
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-
annihilating dark matter. We explore the possible failure of this assumption and find a new
conversion-driven freeze-out mechanism. Considering a representative simplified model inspired
by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space
with very small couplings accommodating the measured relic density. In this region freeze-out takes
place out of chemical equilibrium and dark matter self-annihilation is thoroughly ine�cient. The
relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.
Due to the small dark matter coupling the parameter region is immune to direct detection but
predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)
in the Universe is one of the most pressing questions in
particle- and astrophysics. Despite impressive e�orts to
uncover its interactions with the Standard Model (SM)
of particle physics in (in)direct detection and accelerator
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g. [1, 2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely stud-
ied paradigm of thermal freeze-out, and that can point
towards non-standard signatures.

In this spirit we subject the well-known co-annihilation
scenario [3] to further scrutiny and investigate the im-
portance of the commonly made assumption of chem-
ical equilibrium (CE) between the DM and the co-
annihilation partner. This requires solving the full set of
coupled Boltzmann equations which has been performed
in the context of specific supersymmetric scenarios [4, 5].
Here we consider a simplified DM model and explore the
break-down of CE in detail finding a new, conversion
driven solution for DM freeze-out which points towards
a small interaction strength of the DM particle with the
SM bath. While the smallness of the coupling renders
most of the conventional signatures of DM unobservable,
new opportunities for collider searches arise. In partic-
ular we find that searches for long-lived particles at the
LHC are very powerful tools for testing conversion-driven
freeze-out.

The structure of the paper is as follows: We begin by
introducing a simplified model for co-annihilations before
we present the Boltzmann equations which govern the
DM freeze-out. Next, we investigate conversion-driven
solutions to the Boltzmann equations and confront the
regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize
our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-
tween the DM and its co-annihilation partner will in gen-
eral depend on the details of the considered model, the
key aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simpli-
fied model for DM interacting with quarks. We extend
the matter content of the SM minimally by a Majorana
fermion ⇤, being a singlet under the SM gauge group,
and a scalar quark-partner �q, mediating the interactions
with the SM and acting as the co-annihilation partner.
The interactions of the new particles among themselves
and with the SM are given by [6]

Lint = |Dµ�q|2 � ⇥⇤�qq̄
1� �5

2
⇤+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant
derivative, which contains the interactions of �q with the
gauge bosons as determined by its quantum numbers,
and ⇥⇤ is a Yukawa coupling. Here we choose q = b and
Y = � 1

3 . For the coupling ⇥⇤ = 1
3

⇧
2 e
cos �W

⇥ 0.17 our
simplified model makes contact with the Minimal Super-
symmetric SM where �b can be identified with a right-
handed sbottom and ⇤ with a bino-like neutralino. How-
ever, we will vary ⇥⇤ in our analysis. Nevertheless, we
will refer to the scalar mediator as sbottom, denoted by
�b, even though it does not share all the properties of a
super-partner of the b-quark. Note that choosing a top-
partner instead yields similar results although quantita-
tive di�erences arise due to the large top mass.

An explicit example

▪ Specific model:

▪ SUSY-inspired simplified model:
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
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result that would be obtained when assuming CE. The red
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
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is the only e�cient annihilation channel. Hence the min-
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gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

4

re
la

ti
ve

ra
te

�
/H

mX1/T

X2X2 ⇥ SM

X2 ⇥ X1 SM

ab
un

da
nc

e

mX1/T

X1X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

is a free parameter here [see Ibarra et al. 2009 for SUSY realization] 
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▪ Very small coupling                          :
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m� = 500GeV , meb = 510GeV
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Freeze-out not instantaneous 
Prolonged process!
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Bound state formation effects for 
CDFO



Non-perturbative effects

[see e.g. J. Harz and K. Petraki 1805.01200; A. Mitridate, M. Redi, J. Smirnov, and A. Strumia 1702.01141; 
J. Ellis, F. Luo, and K. A. Olive 1503.07142; T. Binder, B. Blobel, J. Harz, and K. Mukaida 2002.07145]

dominant contribution arises from the processes that annihilate XX:, with total cross-

section �XX: , such that

x�e↵ vrely “ 2Y eq
X Y eq

X: x�XX: vrely
Ỹ 2
eq

“ x�XX: vrely
˜

2g2Xp1 ` �q3 e´2x �

“
g� ` 2gXp1 ` �q3{2 e´x �

‰2

¸
. (3.6)

Both the direct annihilation and the BSF processes contribute to �XX: , as we discuss in

the following.

In this work, we shall neglect thermal e↵ects. The thermal bath may a↵ect the DM

freeze-out in a variety of ways, including, on one hand, screening of the long-range interac-

tions and, on the other hand, frequent (non-radiative) scattering processes that precipitate

DM depletion via BSF [49]. In the context of DM coannihilation with coloured partners,

the latter have been considered in Ref. [51]. The inclusion of thermal corrections for the

radiative BSF processes considered here requires a comprehensive study that we leave for

future work.

3.2 Colour states and the running of the coupling

The X ´ X: colour interaction may be decomposed as

3 b 3̄ “ 1 ‘ 8 . (3.7)

In each irreducible representation R̂, the gluon exchange gives rise to the Coulomb potential

of eq. (2.13) with the coupling ↵g given by eq. (2.14). The quadratic Casimir invariants

for the SUp3q representations of interest are C2p1q “ 0, C2p3q “ C2p3̄q “ 4{3, C2p8q “ 3,

therefore

↵g ” ↵s ˆ
#

4{3, R̂ “ 1,

´1{6, R̂ “ 8.
(3.8)

As discussed in section 2.2, the strong coupling ↵s depends on the momentum transfer

Q. In table 2, we list the average Q for the various vertices appearing in the annihilation

and BSF processes, in this model. For the bound states, the momentum transfer depends

itself on the strong coupling, Q “ Qp↵sq. In this case, we determine ↵s by solving the

numerically the equation

↵spQp↵̃qq “ ↵̃ , (3.9)

for ã. We discuss further the e↵ect of the ↵s running in the following.

3.3 Direct annihilation

XX: pairs annihilate dominantly into gluons (cf. fig. 2), with cross-section [68]

�XX:Ñggvrel “ 14

27

⇡p↵ann
s q2

m2
X

ˆ
ˆ
2

7
S0,r1s ` 5

7
S0,r8s

˙
, (3.10)

where S0,r1s and S0,r8s are the s-wave Sommerfeld factors of the colour-singlet and colour-

octet states,

S0,r1s ” S0

ˆ
4↵S

s

3vrel

˙
and S0,r8s ” S0

ˆ
´ ↵S

s

6vrel

˙
. (3.11)
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Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.
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Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.
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”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
2 qaii1,jj1 “ �i1i S1p⌘1K ` qq ˆ S2p⌘2P ´ pqS2p⌘2K ´ qq

ˆ
“
´igBSF

s pT a
2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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As we shall see in section 2.3, we use eqs. (2.10) and (2.11) to integrate out the virtuality

of X1, X2 in the radiative part of the BSF diagrams.

2.2 Potential and the running of the coupling

The interaction between X1 and X2 can be decomposed into irreducible representations,

R1 b R2 “
ÿ

R̂

R̂ . (2.12)

For each R̂, the interaction is described in the non-relativistic regime by a static Coulomb

potential [63]

V prq “ ´↵g{r , (2.13)

where the coupling ↵g is related to ↵s according to

↵g “ ↵s ˆ 1

2
rC2pR1q ` C2pR2q ´ C2pR̂qs . (2.14)

Here, C2pRq is the quadratic Casimir invariant of the representation R. The Coulomb

potential (2.13) distorts the scattering-state wavefunctions and, if attractive, gives rise to

bound states. The scattering-state and bound-state wavefunctions are reviewed in ap-

pendix A.

In general, the coupling ↵s depends on the momentum transfer Q,

↵s “ ↵spQq , (2.15)

which is di↵erent in the various interaction vertices that appear in the transitions we

consider. In table 1, we list the various vertices, specify the symbols we use, and give the

average Q in each case.

2.3 Amplitude for radiative transitions

Radiative transitions are represented by the diagram of fig. 1a, which can be separated into

the wavefunctions of the asymptotic states and the radiative vertex. The wavefunctions

resum the two-particle interactions at infinity. The long-range X1 ´ X2 interaction arises

from the one-gluon exchange kernel, which gives rise to the static potential of eq. (2.13) in

the non-relativistic regime. The low momentum transfer („ µvrel for the scattering states

and „ µ↵s for the bound states) via the exchanged gluons is responsible for the appearance

of non-perturbative phenomena, the Sommerfeld e↵ect [64, 65] and the mere existence of

bound states. The radiative vertex is computed perturbatively, with the leading order

contributions shown in fig. 1b. We discuss them further below.

In the instantaneous approximation, the amplitude for the radiative capture into a

bound state is [57]

rM⌫
kÑtn`musaii1,jj1 “ 1?

2µ

ª
d3q

p2⇡q3
d3p

p2⇡q3  ̃
˚
n`mppq �̃kpqq rM⌫

transpq,pqsaii1,jj1 , (2.16)

– 5 –

X2

X2

SM

SM
Sommerfeld enhancement:

X1

X2

¨ ¨ ¨ ¨ ¨ ¨ B

g

C⌫

Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.
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Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section

h�BSFvi =
⇣

µ

2⇡T

⌘3/2 Z
d3vrel exp

✓
�
µv

2
rel

2T

◆
[1 + fg(!)]�BSFvrel , (8)

or broken up back into a pair of mediators with the rate

�break =
g
2
q̃µ

3

2⇡2gB

Z 1

0
dvrel v

2
rel fg(!)�BSFvrel , (9)

where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate

�dec '
32

81
mq̃ (↵

ann
s )2(↵B

s )
3
. (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:

dY�

dx
= �

1

3H

ds

dx

�q̃ + �q̃!�

s

 
Yq̃ � Y�

Y
eq
q̃

Y
eq
�

!
, (11)

dYq̃

dx
= +

1

3H

ds

dx

"
1

2

⌦
�q̃q̃†v

↵ ⇣
Y

2
q̃ � Y

eq 2
q̃

⌘
+

1

2

⌦
�BSFv

↵✓
Y

2
q̃ � Y

eq 2
q̃

YB
Y

eq
B

◆

+
�q̃ + �q̃!�

s

 
Yq̃ � Y�

Y
eq
q̃

Y
eq
�

!#
, (12)

dYB
dx

= +
1

3Hs

ds

dx

"
�break

 
YB � Y

eq
B

Y
2
q̃

Y
eq 2
q̃

!
+ �dec (YB � Y

eq
B )

#
, (13)

One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:

YB
Y

eq
B

=
�break Y

2
q̃ /Y

eq 2
q̃ + �dec

�break + �dec
(14)

Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution

⌦
�q̃q̃†v

↵
!
⌦
�q̃q̃†v

↵
e↵

=
⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵ �dec

�break + �dec
. (15)

This approximation has, in fact, been employed in Ref. [2].

Now, we check that

�break =
s

4

Y
eq 2
q̃

Y
eq
B

⌦
�BSFv

↵
. (16)

Indeed, using the approximation eq. (79) we find

s
Y

eq 2
q̃

Y
eq
B

=
n
eq 2
q̃

n
eq
B

=
(2gq̃)2

gB

✓
Tmq̃

4⇡

◆3/2✓
1�

↵
2

8

◆�3/2

e�
m↵2

4T , (17)

given that mB = 2mq̃(1� ↵
2
/8). Furthermore, we can manipulate the integrand in eq. (8) using

e�
mv2

4T (1 + fg) = e�
mv2

4T

✓
1 +

1

e
m
4T (↵2+v2) � 1

◆
= e

m↵2

4T fg . (18)
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
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1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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details of the thermal history prior to freeze-out and in
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even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
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considered here.
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by the gray dashed line in Fig. 4. Furthermore, the gray
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that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section

h�BSFvi =
⇣

µ

2⇡T

⌘3/2 Z
d3vrel exp

✓
�
µv

2
rel

2T

◆
[1 + fg(!)]�BSFvrel , (8)

or broken up back into a pair of mediators with the rate
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g
2
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3

2⇡2gB

Z 1

0
dvrel v

2
rel fg(!)�BSFvrel , (9)

where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate
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s )2(↵B

s )
3
. (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:
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#
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One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:
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(14)

Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution
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This approximation has, in fact, been employed in Ref. [2].

Now, we check that
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Y
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. (16)

Indeed, using the approximation eq. (79) we find
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given that mB = 2mq̃(1� ↵
2
/8). Furthermore, we can manipulate the integrand in eq. (8) using
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
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su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

4

re
la

ti
ve

ra
te

�
/H

mX1/T

X2X2 ⇥ SM

X2 ⇥ X1 SM

ab
un

da
nc

e

mX1/T

X1X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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even weaker coupling such that it was never in thermal
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considered here.
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out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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tion at x = 1 (for a discussion of kinetic equilibration,see [13]). The dependence of the final freeze-out den-sity on the initial condition is also indicated in Fig. 4 bythe area shaded in red, and is remarkably small. There-fore, conversion-driven freeze-out is largely insensitive todetails of the thermal history prior to freeze-out and inparticular to a potential production during the reheatingprocess. Note that this feature distinguishes conversion-driven freeze-out from scenarios for which DM has aneven weaker coupling such that it was never in thermalcontact (e.g. freeze-in production [15]). Thus, while re-quiring a rather weak coupling, the robustness of the con-ventional freeze-out paradigm is preserved in the scenarioconsidered here.
As discussed before, conversions ⇥ � �b are driven bytwo types of processes, decay and scattering. It turnsout that quantitatively both are important for determin-ing the freeze-out density. To illustrate the importance ofscattering processes, we show the freeze-out density thatwould be obtained when only taking decays into accountby the gray dashed line in Fig. 4. Furthermore, the grayshaded area indicates the dependence on initial condi-tions that would result neglecting scatterings. We findthat scattering processes, that are active at small x, areresponsible for wiping out the dependence on the initialabundance in the full solution of the coupled Boltzmannequations.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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[40,
41].

A
second

exam
ple

is
a
com

posite
vector

m
ediator,

sim
ilar

to
the

⇤
in

Q
C
D
[42].

In
either

case,
in

addition
to

the
usual

term
s
in

the
Standard

M
odel

L
agrangian,

the
L
agrangian

w
ith

general
quark

interaction
term

s
is

L
=
� 1

4 Z �µ
� Z 0µ

�
+
1
2 m

2m
ed Z 0µ

Z 0µ
+
i⇥̄
� µ
⌅
µ ⇥

�
m

D
M
⇥̄
⇥

+
Z 0µ ⇥̄

� µ
(g

⇥
V
�
g
⇥
A � 5

)⇥
+
Z 0µ �

q q̄� µ
(g

qV
�
g
qA � 5

)q
.

(3.1)

H
ere

m
m
ed
is
the

(axial)-vector
m
ass

term
and

g
V
and

g
A
are

the
vector

and
axial couplings

respectively.
T
he

dark
m
atter

particle
⇥
is
a
D
irac

ferm
ion

w
ith

m
ass

m
D
M
, neutral under

the
Standard

M
odel

gauge
groups.

T
he

sum
extends

over
all

quarks
and

for
sim

plicity,

w
e
assum

e
that

the
couplings

g
qV

and
g
qA

are
the

sam
e
for

all
quarks.

W
hile

in
general,

a
Z 0

from
a
broken

U
(1) 0

w
ill

also
have

couplings
to

leptons
and

gauge
bosons,

w
e
do

not
consider

them
here

as
they

are
not

relevant
for

the
m
onojet

search. 1
T
his

sim
plified

m
odel is

sim
ilar

(albeit
sim

pler)
to

the
m
odel discussed

in
[31].

Sim
plified

m
odels

of vector

m
ediators

have
also

been
discussed

in
[4,

18,
31,

43,
44].

W
hile

the
above

L
agrangian

allow
s
for

both
vector

and
axial-vector

interactions,
the

phenom
enology

and
lim

its
from

the
m
onojet

search
are

sim
ilar

in
both

cases.
T
herefore

for
the

purposes
of
clarity,

w
e
focus

on
one:

the
axial-vector

interaction.
In

the
rem

ainder

of
this

article, w
e
set

g
⇥
V
=
g
qV

=
0
and

redefine
g
⇥ ⇥

g
⇥
A
and

g
q ⇥

g
gA .

T
he

axial-vector

interaction
has

tw
o
advantages.

F
irstly,

this
interaction

is
non-zero

for
M
ajorana

dark

m
atter

(the
norm

alisation
of

our
results

w
ould

change
by

a
factor

of
four

in
this

case),

unlike
the

vector
interaction,

w
hich

vanishes
for

M
ajorana

dark
m
atter.

Secondly,
the

1
W
e
assum

e
that

the
charges

are
chosen

so
the

U
(1) 0

gauge
sym

m
etry

is
anom

aly
free.

T
his

m
ay

require

additional
particles.

–
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section

h�BSFvi =
⇣

µ

2⇡T

⌘3/2 Z
d3vrel exp

✓
�
µv

2
rel

2T

◆
[1 + fg(!)]�BSFvrel , (8)

or broken up back into a pair of mediators with the rate

�break =
g
2
q̃µ

3

2⇡2gB

Z 1

0
dvrel v

2
rel fg(!)�BSFvrel , (9)

where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate

�dec '
32

81
mq̃ (↵

ann
s )2(↵B

s )
3
. (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:

dY�
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3H
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Y
eq
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Y
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3H
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2
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⌘
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!#
, (12)

dYB
dx
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1

3Hs

ds

dx

"
�break
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eq
B

Y
2
q̃

Y
eq 2
q̃

!
+ �dec (YB � Y

eq
B )

#
, (13)

One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:

YB
Y

eq
B

=
�break Y

2
q̃ /Y

eq 2
q̃ + �dec

�break + �dec
(14)

Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution

⌦
�q̃q̃†v

↵
!
⌦
�q̃q̃†v

↵
e↵

=
⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵ �dec

�break + �dec
. (15)

This approximation has, in fact, been employed in Ref. [2].

Now, we check that

�break =
s

4

Y
eq 2
q̃

Y
eq
B

⌦
�BSFv

↵
. (16)

Indeed, using the approximation eq. (79) we find

s
Y

eq 2
q̃

Y
eq
B

=
n
eq 2
q̃

n
eq
B

=
(2gq̃)2

gB

✓
Tmq̃

4⇡

◆3/2✓
1�

↵
2

8

◆�3/2

e�
m↵2

4T , (17)

given that mB = 2mq̃(1� ↵
2
/8). Furthermore, we can manipulate the integrand in eq. (8) using

e�
mv2

4T (1 + fg) = e�
mv2

4T

✓
1 +

1

e
m
4T (↵2+v2) � 1

◆
= e

m↵2

4T fg . (18)
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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the area shaded in red, and is remarkably small. There-
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section

h�BSFvi =
⇣

µ

2⇡T

⌘3/2 Z
d3vrel exp

✓
�
µv

2
rel

2T

◆
[1 + fg(!)]�BSFvrel , (8)

or broken up back into a pair of mediators with the rate

�break =
g
2
q̃µ

3

2⇡2gB

Z 1

0
dvrel v

2
rel fg(!)�BSFvrel , (9)

where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate

�dec '
32

81
mq̃ (↵

ann
s )2(↵B

s )
3
. (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:
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One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:
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(14)

Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution
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This approximation has, in fact, been employed in Ref. [2].

Now, we check that
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Indeed, using the approximation eq. (79) we find
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given that mB = 2mq̃(1� ↵
2
/8). Furthermore, we can manipulate the integrand in eq. (8) using
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
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where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate
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One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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ing the freeze-out density. To illustrate the importance of
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would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section

h�BSFvi =
⇣

µ

2⇡T

⌘3/2 Z
d3vrel exp
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�
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2
rel
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◆
[1 + fg(!)]�BSFvrel , (8)

or broken up back into a pair of mediators with the rate

�break =
g
2
q̃µ

3

2⇡2gB

Z 1

0
dvrel v

2
rel fg(!)�BSFvrel , (9)

where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate
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Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:
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One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:
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Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution
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This approximation has, in fact, been employed in Ref. [2].

Now, we check that
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Indeed, using the approximation eq. (79) we find
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given that mB = 2mq̃(1� ↵
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/8). Furthermore, we can manipulate the integrand in eq. (8) using
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section
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where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate
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Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section
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where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate

�dec '
32

81
mq̃ (↵

ann
s )2(↵B

s )
3 . (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:
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#
, (13)

One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:

YB
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=
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eq 2
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(14)

Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution
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This approximation has, in fact, been employed in Ref. [2].

Now, we check that
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Indeed, using the approximation eq. (79) we find
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given that mB = 2mq̃(1� ↵
2/8). Furthermore, we can manipulate the integrand in eq. (8) using
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tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.
As discussed before, conversions ⇥ � �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, �h 2
= 0.1198 ± 0.0015 [14]. In the
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are considered. The shaded areas highlight the dependence
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curves correspond to Y�(1) = Y eq� (1).

in the m
� -meb plane is the one for a coupling �� that just

provides CE (but is still small enough so that ⇥⇥- and

⇥�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the

relic density. In this region a solution with small �� ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and ⇥ to provide the right relic density. The

value of �� ranges from 10�7 to 10�6 (from small to large

m
�). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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Figure 2. Left panel: The monojet process from a qq̄ initial state in the EFT framework. The con-
tact interaction is represented by the shaded blob. Details of the particle mediating the interaction
do not have to be specified. Right panel: This shows a UV resolution of the contact interaction for
an (axial)-vector mediator Z

0
, exchanged in the s-channel. The momentum transfer through the

s-channel is denoted by Q.

exchanged in the s-channel. We remain agnostic to the precise origin of the vector mediator
and its coupling with dark matter and quarks. One example of such a mediator is a (axial)-
vector Z

0
, a massive spin-one vector boson from a broken U(1)

0
gauge symmetry [40, 41].

A second example is a composite vector mediator, similar to the ⇤ in QCD [42]. In either
case, in addition to the usual terms in the Standard Model Lagrangian, the Lagrangian
with general quark interaction terms is

L = �1

4
Z �
µ�Z

0µ� +
1

2
m2

medZ
0µZ

0
µ + i⇥̄�µ⌅µ⇥�mDM⇥̄⇥

+ Z
0
µ⇥̄�

µ(g⇥V � g⇥A�
5)⇥+ Z

0
µ

�

q

q̄�µ(gqV � gqA�
5)q .

(3.1)

Here mmed is the (axial)-vector mass term and gV and gA are the vector and axial couplings
respectively. The dark matter particle ⇥ is a Dirac fermion with mass mDM, neutral under
the Standard Model gauge groups. The sum extends over all quarks and for simplicity,
we assume that the couplings gqV and gqA are the same for all quarks. While in general,
a Z

0
from a broken U(1)

0
will also have couplings to leptons and gauge bosons, we do

not consider them here as they are not relevant for the monojet search.1 This simplified
model is similar (albeit simpler) to the model discussed in [31]. Simplified models of vector
mediators have also been discussed in [4, 18, 31, 43, 44].

While the above Lagrangian allows for both vector and axial-vector interactions, the
phenomenology and limits from the monojet search are similar in both cases. Therefore
for the purposes of clarity, we focus on one: the axial-vector interaction. In the remainder
of this article, we set g⇥V = gqV = 0 and redefine g⇥ ⇥ g⇥A and gq ⇥ ggA. The axial-vector
interaction has two advantages. Firstly, this interaction is non-zero for Majorana dark
matter (the normalisation of our results would change by a factor of four in this case),
unlike the vector interaction, which vanishes for Majorana dark matter. Secondly, the

1We assume that the charges are chosen so the U(1)
0
gauge symmetry is anomaly free. This may require

additional particles.
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the
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space

consistent

with
a

relic
density

that
m

atches
the

D
M

density
m

ea-

sured
by

Planck,
�
h 2

=
0.1198

±
0.0015

[14].
In

the

considered
scenario, for sm

all couplings, �b �b †
annihilation

is the only
e�

cient annihilation
channel. Hence the m

in-

im
al relic density

that can
be obtained

for a
certain

point
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FIG
. 4.

R
elic

density
as

a
function

of the
coupling

�
� , for

m
�
=

500G
eV

,
m

eb
=

510G
eV

. The
dotted

blue
line

is
the

result
that

would
be

obtained
when

assum
ing

CE. The
red

line
shows the

full solution
including

all conversion
rates, the

gray
dashed

line corresponds to
the solution

when
only

decays

are
considered.

The
shaded

areas
highlight

the
dependence

on
initial conditions,

Y
� (1)

=
(0�

100)⇥
Y
eq�
(1). The

central

curves correspond
to

Y
� (1)

=
Y
eq�
(1).

in
the

m
� -m

eb plane is the one for a
coupling

�
�

that just

provides
CE

(but
is

still sm
all enough

so
that

⇥
⇥- and

⇥ �b-annihilation
is

negligible).
The

curve
for

which
this

choice
provides the

right relic
density

defines the
bound-

ary
of the valid

param
eter space and

is shown
as a

black,

solid
curve

in
Fig. 7.

Below
this

curve
a

choice
of

�
�

su�
ciently

large
to

support
CE

would
undershoot

the

relic
density.

In
this region

a
solution

with
sm

all
�
�

ex-

ists that renders the
involved

conversion
rates just large

enough
to

allow
for the

right portion
of therm

al contact

between �b
and

⇥
to

provide
the

right
relic

density.
The

value of �
� ranges from

10 �
7

to
10 �

6
(from

sm
all to

large

m
� ). These values lie far beyond

the sensitivity
of direct

or indirect detection
experim

ents.
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Figure
38:

Lower
exclusion

lim
its

in
the

m
� -M

V
plane

at
95%

CL
for

the
ATLAS

(blue
lines)

and
CM

S
(red

lines)
m
ono-jet

searches.
The

lim
its

for
the

sim
plified

m
odel (solid

lines), for
the

EFT
(dashed

lines)
and

for

the
EFT

applying
the

Q
-truncation

(dotted
lines) are

shown.
Four slices

of the
param

eter space: �
g
� g

q =
1
,

�
V
=
0.01M

V
(upper

left
panel), �

g
� g

q =
1, �

V
=
0.5M

V
(upper

right
panel), �

g
� g

q =
0.2, �

V
=
0.01M

V

(lower left panel) and �
g
� g

q =
0.2, �

V
=
0.5M

V
(lower right panel) are displayed. The blue shaded

region
in
the

left panels represent the param
eters space not allowing

a
consistent solution

for the m
ediator width

as a
function

of M
V ,m

� , �
g
� g

q .

39

Results from mono-jet searches at 8 TeV LHC
EFT Limit

▪ Re-interpret LHC Run I mono-jet + MET searches

   [ATLAS:1502.01518, CMS: 1408.3583]

▪ Simulation: FeyRules/MadGraph/Phythia/Delphes

Simplified Model 

Limit
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Figure
2. Left panel: The m

onojet process from
a qq̄ initial state in

the EFT
fram

ework. The con-

tact interaction
is represented

by
the shaded

blob. Details of the particle m
ediating

the interaction

do
not have to

be specified. Right panel: This shows a
UV

resolution
of the contact interaction

for

an
(axial)-vector m

ediator Z 0
, exchanged

in
the

s-channel.
The

m
om
entum

transfer through
the

s-channel is denoted
by

Q.

exchanged
in
the s-channel. W

e rem
ain

agnostic to the precise origin
of the vector m

ediator

and
its coupling with

dark
m
atter and

quarks. One exam
ple of such

a m
ediator is a (axial)-

vector Z 0
, a

m
assive spin-one vector boson

from
a
broken

U(1) 0
gauge sym

m
etry

[40, 41].

A
second

exam
ple is a

com
posite vector m

ediator, sim
ilar to

the ⇤
in
QCD

[42]. In
either

case, in
addition

to
the

usual term
s
in
the

Standard
M
odel Lagrangian, the

Lagrangian

with
general quark

interaction
term

s is

L
=
� 1
4 Z �

µ� Z 0µ�
+ 1
2 m 2

m
ed Z 0µ

Z 0
µ +

i⇥̄� µ
⌅
µ⇥�

m
D
M ⇥̄⇥

+
Z 0
µ ⇥̄� µ

(g
⇥V �

g
⇥A � 5

)⇥
+
Z 0
µ

�

q q̄� µ
(g
qV �

g
qA � 5

)q .

(3.1)

Herem
m
ed is the (axial)-vector m

ass term
and

g
V and

g
A are the vector and

axial couplings

respectively. The dark
m
atter particle ⇥

is a
Dirac ferm

ion
with

m
ass m

D
M , neutral under

the
Standard

M
odel gauge

groups.
The

sum
extends

over
all quarks

and
for

sim
plicity,

we
assum

e
that the

couplings g
qV

and
g
qA

are
the

sam
e
for all quarks.

W
hile

in
general,

a
Z 0

from
a
broken

U(1) 0
will also

have
couplings

to
leptons

and
gauge

bosons, we
do

not consider them
here

as they
are

not relevant for the
m
onojet search. 1

This sim
plified

m
odel is sim

ilar (albeit sim
pler) to the m

odel discussed
in
[31]. Sim

plified
m
odels of vector

m
ediators have also

been
discussed

in
[4, 18, 31, 43, 44].

W
hile

the
above

Lagrangian
allows for both

vector and
axial-vector interactions, the

phenom
enology

and
lim

its from
the

m
onojet search

are
sim

ilar in
both

cases.
Therefore

for the purposes of clarity, we focus on
one: the axial-vector interaction. In

the rem
ainder

of this article, we set g
⇥V =

g
qV =

0
and

redefine g
⇥ ⇥

g
⇥A and

g
q ⇥

g
gA . The axial-vector

interaction
has

two
advantages.

Firstly, this
interaction

is
non-zero

for
M
ajorana

dark

m
atter

(the
norm

alisation
of our

results
would

change
by

a
factor

of four
in
this

case),

unlike
the

vector
interaction, which

vanishes
for

M
ajorana

dark
m
atter.

Secondly, the

1
W
e assum

e that the charges are chosen
so
the U

(1) 0
gauge sym

m
etry

is anom
aly

free. This m
ay
require

additional particles.

–
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x
=
m

� /T
for

m
�
=
500GeV, m

eb =
510GeV, �

� ⇤
2.6 ⇥

10 �
7. Right panel: Evolution of

the resulting abundance (solid curves) of eb (blue) and
⇥

(red). The dashed curves denote the equilibrium
abundances.

tion
at
x
=
1 (for a discussion

of kinetic equilibration,

see [13]).
The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven
freeze-out from

scenarios for which
DM

has an

even
weaker coupling such

that it was never in
thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm
is preserved in the scenario

considered here.

As discussed before, conversions
⇥
�
�b are driven by

two
types of processes, decay

and
scattering.

It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show
the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded
area

indicates the dependence on
initial condi-

tions that would
result neglecting scatterings.

W
e find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.

VIABLE
PARAM

ETER
SPACE

W
e will now

explore the parameter space consistent

with
a relic density that matches the DM

density mea-

sured
by

Planck,
�h 2

=
0.1198 ±

0.0015
[14].

In
the

considered scenario, for small couplings, �b �b †
annihilation

is the only e�cient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point
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Relic density

as a
function

of the coupling
�
� , for

m
�
=
500GeV, m

eb =
510GeV. The dotted

blue line is the

result that would
be obtained

when
assuming

CE. The red

line shows the full solution including all conversion rates, the

gray dashed line corresponds to the solution when only decays

are considered.
The shaded

areas highlight the dependence

on initial conditions, Y
� (1) =

(0�
100)⇥

Y eq�
(1). The central

curves correspond to
Y
� (1) =

Y eq�
(1).

in the m
� -m

eb plane is the one for a coupling
�
� that just

provides CE
(but is still small enough

so that
⇥⇥- and

⇥ �b-annihilation
is negligible).

The curve for which
this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid
curve in

Fig. 7.
Below

this curve a
choice of �

�

su�ciently
large to

support CE
would

undershoot the

relic density. In this region a solution with small �
� ex-

ists that renders the involved conversion rates just large

enough to allow
for the right portion of thermal contact

between �b and
⇥

to provide the right relic density. The

value of �
� ranges from

10 �
7

to
10 �

6
(from

small to large

m
� ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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Figure 38: Lower exclusion limits in the m
� -M

V plane at 95%
CL for the ATLAS (blue lines) and CMS (red

lines) mono-jet searches. The limits for the simplified model (solid lines), for the EFT (dashed lines) and for

the EFT applying the Q-truncation (dotted lines) are shown. Four slices of the parameter space: �
g�gq = 1 ,

�
V = 0.01M

V (upper left panel), �
g�gq = 1, �

V = 0.5M
V (upper right panel), �

g�gq = 0.2, �
V = 0.01M

V

(lower left panel) and �
g�gq = 0.2, �

V = 0.5M
V (lower right panel) are displayed. The blue shaded region in the

left panels represent the parameters space not allowing a consistent solution for the mediator width as a function

of M
V ,m

� , �
g�gq .
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Results from mono-jet searches at 8 TeV LHC

EFT Limit

▪ Re-interpret LHC Run I mono-jet + MET searches

   [ATLAS:1502.01518, CMS: 1408.3583]

▪ Simulation: FeyRules/MadGraph/Phythia/Delphes

Simplified Model 

Limit
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�̄
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q

q̄ �

�̄
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Z �

Figure 2. Left panel: The monojet process from a qq̄ initial state in the EFT framework. The con-

tact interaction is represented by the shaded blob. Details of the particle mediating the interaction

do not have to be specified. Right panel: This shows a UV resolution of the contact interaction for

an (axial)-vector mediator Z 0
, exchanged in the s-channel. The momentum transfer through the

s-channel is denoted by Q.

exchanged in the s-channel. We remain agnostic to the precise origin of the vector mediator

and its coupling with dark matter and quarks. One example of such a mediator is a (axial)-

vector Z 0
, a massive spin-one vector boson from a broken U(1) 0

gauge symmetry [40, 41].

A second example is a composite vector mediator, similar to the ⇤ in QCD [42]. In either

case, in addition to the usual terms in the Standard Model Lagrangian, the Lagrangian

with general quark interaction terms is
L = � 1

4 Z �
µ� Z 0µ�

+ 1
2 m 2

medZ 0µ
Z 0
µ + i⇥̄� µ

⌅µ⇥�m
DM ⇥̄⇥

+ Z 0
µ ⇥̄� µ

(g⇥V � g⇥A� 5
)⇥+ Z 0

µ
�

q
q̄� µ

(gqV � gqA� 5
)q .

(3.1)

Herem
med is the (axial)-vector mass term and gV and gA are the vector and axial couplings

respectively. The dark matter particle ⇥ is a Dirac fermion with mass m
DM , neutral under

the Standard Model gauge groups. The sum extends over all quarks and for simplicity,

we assume that the couplings gqV and gqA are the same for all quarks. While in general,

a Z 0
from

a broken U(1) 0
will also have couplings to leptons and gauge bosons, we do

not consider them here as they are not relevant for the monojet search. 1
This simplified

model is similar (albeit simpler) to the model discussed in [31]. Simplified models of vector

mediators have also been discussed in [4, 18, 31, 43, 44].

While the above Lagrangian allows for both vector and axial-vector interactions, the

phenomenology and limits from the monojet search are similar in both cases. Therefore

for the purposes of clarity, we focus on one: the axial-vector interaction. In the remainder

of this article, we set g⇥V = gqV = 0 and redefine g⇥ ⇥ g⇥A and gq ⇥ ggA . The axial-vector

interaction has two advantages. Firstly, this interaction is non-zero for Majorana dark

matter (the normalisation of our results would change by a factor of four in this case),

unlike the vector interaction, which vanishes for Majorana dark matter. Secondly, the

1
We assume that the charges are chosen so the U(1) 0

gauge symmetry is anomaly free. This may require

additional particles.
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Text

}

2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
cross section

h�BSFvi =
⇣

µ

2⇡T

⌘3/2 Z
d3vrel exp

✓
�
µv

2
rel

2T

◆
[1 + fg(!)]�BSFvrel , (8)

or broken up back into a pair of mediators with the rate

�break =
g
2
q̃µ

3

2⇡2gB

Z 1

0
dvrel v

2
rel fg(!)�BSFvrel , (9)

where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate

�dec '
32

81
mq̃ (↵

ann
s )2(↵B

s )
3
. (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
the above equations.

The coupled Boltzmann equation reads:

dY�

dx
= �

1

3H

ds

dx

�q̃ + �q̃!�

s

 
Yq̃ � Y�

Y
eq
q̃

Y
eq
�

!
, (11)

dYq̃

dx
= +

1

3H

ds

dx

"
1

2

⌦
�q̃q̃†v

↵ ⇣
Y

2
q̃ � Y

eq 2
q̃

⌘
+

1

2

⌦
�BSFv

↵✓
Y

2
q̃ � Y

eq 2
q̃

YB
Y

eq
B

◆

+
�q̃ + �q̃!�

s

 
Yq̃ � Y�

Y
eq
q̃

Y
eq
�

!#
, (12)

dYB
dx

= +
1

3Hs

ds

dx

"
�break

 
YB � Y

eq
B

Y
2
q̃

Y
eq 2
q̃

!
+ �dec (YB � Y

eq
B )

#
, (13)

One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y

eq
B algebraically [3]:

YB
Y

eq
B

=
�break Y

2
q̃ /Y

eq 2
q̃ + �dec

�break + �dec
(14)

Inserting it in eq. (12) yields the same form as eq. (5) but with the substitution

⌦
�q̃q̃†v

↵
!
⌦
�q̃q̃†v

↵
e↵

=
⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵ �dec

�break + �dec
. (15)

This approximation has, in fact, been employed in Ref. [2].

Now, we check that

�break =
s

4

Y
eq 2
q̃

Y
eq
B

⌦
�BSFv

↵
. (16)
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tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.
As discussed before, conversions ⇥ � �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, �h 2
= 0.1198 ± 0.0015 [14]. In the
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imal relic density that can be obtained for a certain point

⇥
h

2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2
= 0.12FIG. 4. Relic density as a function of the coupling �� , for

m
� = 500GeV, meb = 510GeV. The dotted blue line is the

result that would be obtained when assuming CE. The red
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gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence

on initial conditions, Y�(1) = (0�100)⇥ Y eq� (1). The central

curves correspond to Y�(1) = Y eq� (1).

in the m
� -meb plane is the one for a coupling �� that just

provides CE (but is still small enough so that ⇥⇥- and

⇥�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the

relic density. In this region a solution with small �� ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and ⇥ to provide the right relic density. The

value of �� ranges from 10�7 to 10�6 (from small to large

m
�). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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do not have to be specified. Right panel: This shows a UV resolution of the contact interaction for
an (axial)-vector mediator Z

0
, exchanged in the s-channel. The momentum transfer through the

s-channel is denoted by Q.

exchanged in the s-channel. We remain agnostic to the precise origin of the vector mediator
and its coupling with dark matter and quarks. One example of such a mediator is a (axial)-
vector Z

0
, a massive spin-one vector boson from a broken U(1)

0
gauge symmetry [40, 41].

A second example is a composite vector mediator, similar to the ⇤ in QCD [42]. In either
case, in addition to the usual terms in the Standard Model Lagrangian, the Lagrangian
with general quark interaction terms is

L = �1

4
Z �
µ�Z

0µ� +
1

2
m2

medZ
0µZ

0
µ + i⇥̄�µ⌅µ⇥�mDM⇥̄⇥

+ Z
0
µ⇥̄�

µ(g⇥V � g⇥A�
5)⇥+ Z

0
µ

�

q

q̄�µ(gqV � gqA�
5)q .

(3.1)

Here mmed is the (axial)-vector mass term and gV and gA are the vector and axial couplings
respectively. The dark matter particle ⇥ is a Dirac fermion with mass mDM, neutral under
the Standard Model gauge groups. The sum extends over all quarks and for simplicity,
we assume that the couplings gqV and gqA are the same for all quarks. While in general,
a Z

0
from a broken U(1)

0
will also have couplings to leptons and gauge bosons, we do

not consider them here as they are not relevant for the monojet search.1 This simplified
model is similar (albeit simpler) to the model discussed in [31]. Simplified models of vector
mediators have also been discussed in [4, 18, 31, 43, 44].

While the above Lagrangian allows for both vector and axial-vector interactions, the
phenomenology and limits from the monojet search are similar in both cases. Therefore
for the purposes of clarity, we focus on one: the axial-vector interaction. In the remainder
of this article, we set g⇥V = gqV = 0 and redefine g⇥ ⇥ g⇥A and gq ⇥ ggA. The axial-vector
interaction has two advantages. Firstly, this interaction is non-zero for Majorana dark
matter (the normalisation of our results would change by a factor of four in this case),
unlike the vector interaction, which vanishes for Majorana dark matter. Secondly, the

1We assume that the charges are chosen so the U(1)
0
gauge symmetry is anomaly free. This may require

additional particles.
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red, and
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process. Note that this feature distinguishes conversion-
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scenarios
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which
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has

an

even
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such
that it was never in
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quiring a rather weak coupling, the robustness of the con-
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is preserved in the scenario
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here.
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�b are driven

by
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types of processes, decay
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It turns

out that quantitatively both are important for determin-
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scattering processes, we show
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would be obtained when only taking decays into account

by the gray dashed
line in
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dependence

on
initial condi-

tions that would
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m
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510GeV. The
dotted
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assuming
CE. The
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line shows the full solution
including all conversion

rates, the

gray dashed line corresponds to the solution when only decays
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100)⇥
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(1). The central
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� (1) =
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⇥⇥- and

⇥ �b-annihilation
is negligible).
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Fig. 7.
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this curve
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Figure 38: Lower exclusion limits in the m
� -M

V plane at 95%
CL

for the ATLAS (blue lines) and CMS (red

lines) mono-jet searches. The limits for the simplified model (solid lines), for the EFT
(dashed lines) and for

the EFT
applying the Q-truncation (dotted lines) are shown. Four slices of the parameter space: �
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�
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V (upper left panel), �

g�gq =
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V
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Results from mono-jet searches at 8 TeV LHC

EFT Limit

▪ Re-interpret LHC Run I mono-jet + MET searches

   [ATLAS:1502.01518, CMS: 1408.3583]

▪ Simulation: FeyRules/MadGraph/Phythia/Delphes

Simplified Model 

Limit
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Figure 2. Left panel: The monojet process from
a qq̄ initial state in the EFT framework. The con-

tact interaction is represented by the shaded blob. Details of the particle mediating the interaction

do not have to be specified. Right panel: This shows a UV
resolution of the contact interaction for

an (axial)-vector mediator Z 0
, exchanged in the s-channel. The momentum

transfer through the

s-channel is denoted by Q.

exchanged in the s-channel. We remain agnostic to the precise origin of the vector mediator

and its coupling with dark matter and quarks. One example of such a mediator is a (axial)-

vector Z 0
, a massive spin-one vector boson from

a broken U(1) 0
gauge symmetry [40, 41].

A
second example is a composite vector mediator, similar to the ⇤ in QCD

[42]. In either

case, in addition to the usual terms in the Standard Model Lagrangian, the Lagrangian

with general quark interaction terms is

L = � 1
4 Z �

µ� Z 0µ�
+ 1
2 m 2

medZ 0µ
Z 0
µ + i⇥̄� µ

⌅
µ⇥�m

DM ⇥̄⇥

+ Z 0
µ ⇥̄� µ

(g⇥V � g⇥A� 5
)⇥+ Z 0

µ
�

q
q̄� µ

(gqV � gqA� 5
)q .

(3.1)

Herem
med is the (axial)-vector mass term

and gV and gA are the vector and axial couplings

respectively. The dark matter particle ⇥ is a Dirac fermion with mass m
DM , neutral under

the Standard Model gauge groups. The sum
extends over all quarks and for simplicity,

we assume that the couplings gqV and gqA are the same for all quarks. While in general,

a Z 0
from

a broken U(1) 0
will also have couplings to leptons and gauge bosons, we do

not consider them
here as they are not relevant for the monojet search. 1

This simplified

model is similar (albeit simpler) to the model discussed in [31]. Simplified models of vector

mediators have also been discussed in [4, 18, 31, 43, 44].

While the above Lagrangian allows for both vector and axial-vector interactions, the

phenomenology and limits from
the monojet search are similar in both cases. Therefore

for the purposes of clarity, we focus on one: the axial-vector interaction. In the remainder

of this article, we set g⇥V = gqV =
0 and redefine g⇥ ⇥ g⇥A and gq ⇥

ggA . The axial-vector

interaction has two advantages.
Firstly, this interaction is non-zero for Majorana dark

matter (the normalisation of our results would change by a factor of four in this case),

unlike the vector interaction, which vanishes for Majorana dark matter.
Secondly, the

1
We assume that the charges are chosen so the U(1) 0

gauge symmetry is anomaly free. This may require

additional particles.
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2 Including BSF

Bound state formation from a pair of scalar mediator particles can be described by introducing a
third species in the Boltzmann equation, B, that is produced in mediator-pair annihilation with the
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where gq̃ = 3, gB = 1, µ = mq̃/2 and fg(!) = 1/(e!/T
� 1) is the gluon occupation number.

Furthermore, it can decay into standard model particle with the rate

�dec '
32

81
mq̃ (↵

ann
s )2(↵B

s )
3
. (10)

Here I am following Ref. [2] which contains all details and definitions of the occurring quantities in
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One can simplify the latter two equation and combine it to one. In the limit of �break � H and/or
�dec � H we can set HdYB/dx = 0 and eq. (20) can be solved for YB/Y
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B algebraically [3]:
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Conversion rate on the edge of being efficient:

⇒ Long-lived particles at LHC!
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Figure 1 – Ratio between decay rate and Hubble rate as a function of the inverse temperature.

the number density of the dark sector is then driven entirely by annihilations of heavier states
and not by dark matter annihilations. In this case the relic density becomes independent of
the coupling strength of dark matter. However, this conclusion is only true for couplings that
are still large enough to maintain relative chemical equilibrium.d For even smaller couplings
relative chemical equilibrium breaks down. In this case conversion processes are responsible for
the chemical decoupling of dark matter and hence set the relic density. This conversion-driven
freeze-out mechanism is phenomenologically distinct and opens up a new region in parameter
space where coannihilation would lead to under-abundant dark matter, if relative chemical
equilibrium would hold.

2.3 The “LLP miracle”

The departure from relative chemical equilibrium has an immediate consequence for the possible
decay length of the heavier states. As the decay contributes to the conversions, requiring their
rate to become ine�cient necessarily requires

�dec . H . (3)

In the radiation dominated Universe H =
p

g⇤/90⇡T 2
/MPl, where MPl ' 2.44⇥1018 GeV is the

reduced Planck mass. We can translates the inverse Hubble rate into a length. Using g⇤ = 100,
the inequality (3) then reads
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�1

' 1.5 cm

✓
(100GeV)2

T 2

◆
. (4)

This is an important results which states that for particles in the GeV to TeV range a departure
from relative chemical equilibrium during freeze-out (T ' m�/30) implies macroscopic decay
length at the LHC – an intriguing coincidence that renders the LHC to be a powerful tool to
explore these scenarios. Figure 1 illustrates the prompt, meta-stable and detector-stable regime
in the plane spanned by the inverse temperature and �dec/H.

3 Realizations of conversion-driven freeze-out

In this section we discuss a realization of conversion-driven freeze-out within a simplified dark
matter model. We consider an extension of the standard model by a neutral Majorana fermion �

and a colored scalar particle q̃ that acts as a (t-channel) mediator of the dark matter interactions
with the standard model quarks q:

Lint = |Dµq̃|
2 + ��q̃ q̄
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2
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d
Note that conversion rates are enhance compared to annihilations by a Boltzmann factor of order e
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the coupling strength of dark matter. However, this conclusion is only true for couplings that
are still large enough to maintain relative chemical equilibrium.d For even smaller couplings
relative chemical equilibrium breaks down. In this case conversion processes are responsible for
the chemical decoupling of dark matter and hence set the relic density. This conversion-driven
freeze-out mechanism is phenomenologically distinct and opens up a new region in parameter
space where coannihilation would lead to under-abundant dark matter, if relative chemical
equilibrium would hold.
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length at the LHC – an intriguing coincidence that renders the LHC to be a powerful tool to
explore these scenarios. Figure 1 illustrates the prompt, meta-stable and detector-stable regime
in the plane spanned by the inverse temperature and �dec/H.

3 Realizations of conversion-driven freeze-out

In this section we discuss a realization of conversion-driven freeze-out within a simplified dark
matter model. We consider an extension of the standard model by a neutral Majorana fermion �

and a colored scalar particle q̃ that acts as a (t-channel) mediator of the dark matter interactions
with the standard model quarks q:
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Relevant for current searches?
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Long-lived particles at LHC

LLP Workshop | Karri Folan DiPetrillo | 18.10.2017

The ATLAS Detector 12

Many thanks to  
Heather Russell for the 
ATLAS and LLP figures!
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Fig. 1: Allowed parameter space in the considered conversion-driven freeze-out scenario in the DM-mass vs.
mass-splitting plane. The thin green and dotted grey curves denote contours of constant DM coupling and decay
length, respectively (taken from [1]). We show 95% CL exclusion limits derived from the following analyses. The
dark and light blue regions are excluded from R-hadron searches at the 8 [6] and 13 TeV LHC [7], respectively,
as reinterpreted in [1]. The red and orange regions are excluded by the monojet [4] and multijet plus missing
energy [5] analyses, respectively, while the teal and purple regions represent the limits obtained from the disap-
pearing track [10] and displaced jet [11] searches, respectively. Finally, the purple dotted curve illustrates the limit
that would be obtained after dropping the invariant mass cut of the last search (see the text for details).

Fig. 2: Production and decay diagram at LHC (in this case with ISR).

match the performance of the reinterpreted search has been performed with DELPHES 3 [27]. The results88

of the reinterpretation are presented in Fig. 1, where the orange curve delineates the constraint on the89

parameter space in question, as an exclusion at 95 % using the CLs prescription. The constraint is90

dominated by the two jet bin with the lowest values of me↵ and missing transverse momentum criteria.91

This is understandable as we predominantly rely on radiation jets to pass the analysis selection, the new92

physics spectra being too compressed to lead to hard objects. The difference in the behaviour of the93

constrained region between the monojet analysis and the multijet plus missing energy analysis can be94

understood as stemming from two factors. The first one consists in the increased luminosity used in95

the multijet search. Secondly, the multijet search prioritizes larger mass gaps, while the monojet targets96

more compressed regions. Overall, we observe that up to m� ⇠ 500 GeV is ruled for �m�̃b ⇠ 35 GeV.97

Those typical searches for supersymmetry through the production of a large amount of missing98

energy in association with an important hadronic activity are however unsensitive to more compressed99

new physics spectra. In order to circumvert this issue, the CMS collaboration has performed a traditional100

search [28] for squarks and gluino using the MT2 kinematic variable [29] and extended it by including101
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Summary

▪ Conversion-driven freeze-out less explored terrain 

▪ Prolonged freeze-out process

▪ Bound states of coannihilator particularly important

▪ Leading correction in ionization equilibrium: 
   bound state decay

▪ Colored coannihilator:  viable parameter space  
   significantly enlarged

▪ Important for long-lived particle searches at LHC
    H ~ Γ: Lifetimes naturally O(1-100cm) 
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