Dark Matter search with the **CRESST-III experiment**

Stefano Di Lorenzo LNGS - INFN

on behalf of the CRESST Collaboration

22nd edition PANIC Lisbon Portugal

Particles and Nuclei International Conference

Stefano Di Lorenzo

Stefano Di Lorenzo

Cryogenic Rare Event Search with **S**uperconducting **T**hermometers is located at the Laboratori Nazionali del Gran Sasso. Rock overburden ~1400m in all directions (3800 m.w.e)

Stefano Di Lorenzo

Transition Edge Sensor

 $E \sim \text{keV} \Rightarrow T \sim \mu \text{K} \Rightarrow R \sim \text{m}\Omega$

Stefano Di Lorenzo

CRESST Detector

Stefano Di Lorenzo

CRESST Detector

Stefano Di Lorenzo

Phonon signal

- Most energy released in this channel (~90%) - Energy released is (almost) particle independent

Light signal

- few % of the energy released as scintillation light - particle dependent \Rightarrow event discrimination

Event Discrimination

Light signal LY =Phonon signal

Excellent discrimination

between potential signal events and dominant radioactive background

Stefano Di Lorenzo

Neutron Calibration

Dedicated neutron calibration campaign to precisely fit the electron and nuclear recoil bands.

Stefano Di Lorenzo

Data stream continuously stored on disk

Optimum Filter trigger algorithm applied to the data-stream

Mancuso, M. et al, J Low Temp Phys **199**, 547–555 (2020).

Stefano Di Lorenzo

Data analysis

Blind analysis

- randomly selected)
- Applied without change to the **blind** dataset

Stability: detector in the correct operating point **Rate:** noise condition **Coincidences** : µ-veto, events in other detectors Data Quality: non standard event (pile up, quantum flux loss...)

- Cuts optimized on non-blind training data set (~20% of the data

Efficiency & Threshold

To measure efficiency simulated events are created by superimposing the standard event onto the continuous data stream at randomly selected points in time.

Efficiency ≈ 60 % over a wide energy range

(= 1 noise event triggered 1 c/kg/day)

Stefano Di Lorenzo

Run34 - Detector A, Light Yield and Energy Spectrum

Data taking 05/2016 – 02/2018

Stefano Di Lorenzo

Run34 - Detector A, Light Yield and Energy Spectrum

Stefano Di Lorenzo

Exclusion Limit

Using the DM expected energy spectrum and the events in the ROI, we use 1D Yellin optimum interval method to compute the exclusion limit:

- Improved limit a 0.5 GeV/c²
- Extended reach from 0.5 to 0.16 GeV/c²
- Best Limit for mass below
 1.7 GeV/c²*

*Not based on Migdal Effect

Stefano Di Lorenzo

(qd) Section Particle-Nucleon Dark Matte

Run34 - other CaWO₄ absorbers

PhD Thesis, M. Stahlberg, TU Wien (2020)

Stefano Di Lorenzo

Detector	Threshold (eV)
Det A	30.1
Det B	120
Det E	64.8
Det J	83.4
Del J	00.4

Low energy excess in similar detectors but with different shape

Not single common origin

Run35 - Sapphire absorbers

Stefano Di Lorenzo

Both crystals cut from same sapphire crystal used in CRESST-I

Same detector configuration, but detector F has a much higher rate.

Threshold 76.9 eV (Det-F)

66.5 eV (Det-J)

Exposure 0.995 kg days (Det-F)

0.970 kg days (Det-J)

Understanding the low energy excess

Dedicated setups with hardware modifications to disentangle the

- Crystal material
- Crystal surface
- Holding
- Facing surfaces

Collecting DM data since November 2020

Stefano Di Lorenzo

different contributions are currently installed in the CRESST cryostat

Future plans

Upgrade of CRESST-III to 288 channels

Stefano Di Lorenzo

Summary and conclusion

The CRESST cryogenic approach enables to obtain

- Leading results for the low mass DM search
- Unprecedented low energy threshold
- Possibility to use different target materials

Ongoing studies on the low energy excess Community effort to understand the rise observed in other DM experiments

With the future upgrade we will have new challenges to face and new physics to explore

https://indico.cern.ch/event/1013203/

Thank you for your attention

Stefano Di Lorenzo

