

Flavour-physics prospects in Run3 and HL-LHC at ATLAS and CMS

Adriano Di Florio Politecnico &INFN Bari On behalf of CMS & ATLAS collaborations

N

LHC schedule

- Run 3 will take place from 2022 to 2024 at CM energy between 13 and 14 TeV :
 - pilot Beam Test Oct. 21, start of Run-3 2022 (stable beams expected in May);
 - expected to more than double the integrated luminosity of Run 2;
 - detector and reconstruction improvements;

- **Run 4** will take place after the LS3 at CM energy of 14 TeV :
 - <PU> of 140-200, highly dense environment;
 - Major detector & software upgrade;
 - aims to x10 the integrated luminosity of Run3;
 - Peak luminosity @ 5-7.5 x 10³⁴ Hz/cm² ;

CMS & ATLAS detectors - Run 3 & Phase II Upgrades

Adriano Di Florio

PANIC 2021- 05-12 September 2021

3

Run3 — Upgrades and developments

Statistics

All analyses could be repeated with up to twice the integrated luminosity. Additional improvements in sensitivity from further developments, including ML techniques, and reduction of the systematic uncertainties.

Non-conventional data taking methods

CMS B-parking: in 2018 low p_T displaced triggers to save a sample of unbiased B hadron decays recoiling wrt the triggered muon (rate ~2kHz). Reconstructed after the end of the run. Enables several analyses on LFU violation. Studying how to further optimize the trigger in Run 3.

Event reconstruction improvements

- CMS: Developed heterogeneous event reconstruction at HLT (CPU + GPU) Already offload ~30% of reconstruction to GPUs: ECAL & HCAL local reconstruction, pixel reconstruction and tracking.
 - Important gains in performance at HLT.
 - Current baseline for Run 3 HLT farm.
- ATLAS: Increased performance of software algorithms. E.g. timing of Run3 tracking time reduced by a factor 4 w.r.t. Run2.
 - Fake rate drastically reduced (-50%) while efficiency untouched.
 - Increased availability of tracking at HLT.

Adriano Di Florio

Phase II — Upgrades and developments

Extremely harsh environment:

- expected average pileup interactions of 140-200; ۲
- increase of particle density; .
- radiation damage to the detector; .
- B physics potential will be affected by the HL-LHC pileup conditions:
 - low p_{T} signature;
 - requirement of very high precision measurements;
- Both ATLAS & CMS will undergo a major upgrade in both hardware and software to cope with these new challenges maintaining or improving Phase I performance.

Adriano Di Florio

$$B^0_s
ightarrow J/\psi \phi$$

$B_s^{\,0} ightarrow J/\psi \phi$ and CP violation

 ϕ_s : CPV phase arises from interference between direct B_s^0 decays to a CP eigenstate and decays through $B_s^0 - \overline{B_s^0}$.

> SM:
$$\phi_s \simeq -2\beta_s = -2arg\left(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -36.96^{+0.72}_{-0.84}$$
mrad.

> **BSM:** modification up to $\sim 10\%$ (new particles contribute to mixing).

State of the art: some tension between the experiments.

Perspectives: potentially new physics hidden discoverable as uncertainties shrinks.

	For both experiments statistical uncertainties still play an important role: room for improvement for Run3&HL.												
ATLAS	S Parameter	Value	Statistical	Systematic	[ps ⁻¹]		D0 8 fb ⁻¹	HFLAV PDG 2021	CMS	Paramotor	Fit value	Stat up cor	Suct up co
			uncertainty	uncertainty	<u> </u>		68%	% CL contours	~	• [mrad]	11 value	± 50	± 10
021)342 "	$\phi_{s} \text{ [rad]}$ $\Delta \Gamma_{s} \text{ [ps}^{-1]}$ $\Gamma_{s} \text{ [ps}^{-1]}$ $ A_{\parallel}(0) ^{2}$ $ A_{0}(0) ^{2}$	-0.081 0.0607 0.6687 0.2213 0.5131	0.041 0.0047 0.0015 0.0019 0.0013	0.022 0.0043 0.0022 0.0023 0.0038	0.11	Combined [*] 'ΔΓ _s errors scaled by 1.77 ATLAS 99.7 fb ⁻¹	(Δ CMS 116	$\log \mathcal{L} = 1.15$) 5.1 fb ⁻¹ CDF 9.6 fb ⁻¹	021)136188	$ \begin{aligned} \varphi_{\rm s} [{\rm mrad}] \\ \Delta \Gamma_{\rm s} [{\rm ps}^{-1}] \\ \Delta m_{\rm s} [\hbar {\rm ps}^{-1}] \\ \lambda \\ \Gamma_{\rm s} [{\rm ps}^{-1}] \end{aligned} $	-11 0.114 17.51 0.972 0.6531	$\pm 50 \\ \pm 0.014 \\ ^{+0.10} \\ ^{-0.09} \\ \pm 0.026 \\ \pm 0.0042$	± 10 ± 0.007 ± 0.03 ± 0.008 ± 0.0024
EPJ C81(2)	$ A_S(0) ^2$ $\delta_{\perp} - \delta_S \text{ [rad]}$	-0.0321 -0.25	0.0033 0.05	0.0046 0.04	0.09 - - 0.07 -		LHCb 4.9 fb ⁻¹			$ A_0 ^2$ $ A_\perp ^2$ $ A_S ^2$ $\delta_{\parallel} \text{ [rad]}$ $\delta_{\perp} \text{ [rad]}$	0.5350 0.2337 0.022 3.18 2.77	± 0.0047 ± 0.0063 $^{+0.008}_{-0.007}$ ± 0.12 ± 0.16	$\pm 0.0048 \\ \pm 0.0044 \\ \pm 0.016 \\ \pm 0.03 \\ \pm 0.04$
	δ_{\perp} [rad] δ_{\parallel} [rad]	Solution (a) 3.12 3.35 Solution (b)	0.11 0.05	0.06 0.09				-1	816(2				
	δ_{\perp} [rad] δ_{\parallel} [rad]	2.91 2.94	0.11 0.05	0.06 0.09	0.05 -0	.5 -0.3 -0.1	0.1	0.3 $\phi_s^{c\bar{c}s}$ [rad]	PLB 8	$\delta_{\rm S\perp}$ [rad]	0.221	+ 0.083 - 0.070	± 0.048

Adriano Di Florio

PANIC 2021- 05-12 September 2021

$B_s^{\,0} ightarrow J/\psi \phi$ performance improvement @ HL-LHC

Run1-like. Dedicated MCs @ <PU>=200. 3000 fb^{-1}

- new silicon tracker: better resolution, coverage up to $|\eta| = 4$;
- *cτ* uncertainty greatly reduced;
- multiple tagging scenarios considered influence ϕ_s uncertainties;

- ITk 50×50 μm^2 ;
- σ_{τ} resoluton improves over Run2 IBL, improves with p_{τ} ;
- could improve further with analogue digital pixel clustering;

$B_s^{\,0} ightarrow J/\psi \phi$ and CP violation @ HL-LHC

- > Systematic errors are based on conservative assumptions.
- Combining the increased statistics and the improved detector performance ATLAS and CMS would reach enough precision to be comparable with SM: uncertainties reduced by a factor 4 ÷ 6.
- > Further improvements with cross-experiment results combination.

9

$B_{d/s} \rightarrow \mu\mu$

11

- SM: suppressed decay [loop + helicity]:
 - high precision branching fractions (4-5%);
 - only heavy eigenstate B_{sH}^0 contribute.

BSM:

Adriano Di Florio

non-SM heavy particles (2 higgs doublet, MF Violation, SUSY,...) may affect the branching fractions or affect $\tau_{\mu\mu}$.

State of the art: consistent measurements across experiments agree with S.M.

Perspectives: potentially new physics hidden discoverable as uncertainties shrinks.

Still statistics from full Run2/3 to be explored fully & in Run 4 we expect better mass separation and highly increased statistics PANIC 2021- 05-12 September 2021

 $\mathscr{B}(B^0_s \to \mu^+ \mu^-) = (3.66 \pm 0.14) \cdot 10^{-9}$

 $\mathscr{B}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.005) \cdot 10^{-10}$

Mass Separation @ HL-LHC

Run1-like. Dedicated MCs @ $\langle PU \rangle = 200.3000 \text{ fb}^{-1}$

- most of the impact from new silicon tracker improved performance;
- up to ~ 25 % improvement in mass peak separation (η dependent);
- cross-feed and backgrounds reduced;

- ITk 50×50 μm^2 ;
- improved mass resolution for B_s :
 - barrel x 1.65: $1.4\sigma \rightarrow 2.3\sigma$;
 - endcaps x 1.5: $0.85\sigma \rightarrow 1.3\sigma$;
- multiple triggering scenarios:

 $\mu_{10}\,\mu_{10}$ - $\mu_{10}\mu_6$ - $\mu_6\mu_6$;

$B_s^0 \rightarrow \mu \mu @ HL-LHC$

 $< 5\sigma$ @ Run3

Much more precise measurements of the $\mathcal{B}s$ and $\tau(B_s)$.

 $6.3 \div 8.3\sigma$ @ HL-LHC

HL

PANIC 2021- 05-12 September 2021

Further Studies

$\tau \rightarrow 3 \mu$ @ HL-LHC

The $\tau \rightarrow 3\mu$ decay has never been observed so far.

SM:

- no symmetry than enforces the conservation of the lepton flavour; 1.
- charged LFV decays are possible in SM with neutrino oscillations $\mathcal{B}(\tau \rightarrow 3\mu) \sim 10^{-54}$. 2.

\geq **BSM:**

some BSM theories predict $\mathcal{B}(\tau \to 3\mu) < 10^{-8} \div 10^{-9}$ (observable at present-day experiments);

Testing HL potential with dedicated MCs @ <PU>=200. 3000 fb^{-1} . Multiple scenarios:

- W-channel: non-improved (~Run1 scaled), intermediate (~Run2 scaled), improved (\w ITk).
- HF-channel: low (\sim W), medium ($3\times$ W), high ($10\times$ W) backgrounds.

In all cases huge improvement w.r.t. Run1 (for W) and important contribution to the search.

New 2016 data result [JHEP01(2021)163]

 $\mathcal{B}(\tau \to 3\mu) < 8.0 \cdot 10^{-8} @ 90\%$ C. L. (from W + HF)

- **Run3 (+full Run2)**: increased statistics and new triggering options ٠
- **HL**: will gain from extended muon coverage and L1 trackin (and statistics, of course).

Adriano Di Florio

$B^0 \rightarrow K^{*0} \mu \mu$ @ HL-LHC

- $b \rightarrow sll$ processes are an **excellent laboratory** to probe new physics phenomena:
- suppressed in SM (FCNC, forbidden tree-level);
- new phyisics phenomena can affect BR or angular distributions of final state,

- improved tracking performance
- 3 trigger scenarios μ_{10} μ_{10} $\mu_{10}\mu_6$ $\mu_6\mu_6$
- P'_5 precision improved by $\sim \times 5$, $\sim \times 8$, $\sim \times 9$

Run 1-like +

- improved tracking: higher mass resolution
- P'_5 precision improve by a ~×15
- capability to perform a full angular analysis

$B_{s}^{0} \rightarrow \phi \phi \rightarrow 4K @ HL-LHC$

- **SM:** FCNC process forbidden at tree level.
- **BSM:** *b* quark decaying through a penguin diagram. \succ
 - Contributions from heavy particles, beyond the direct reach of LHC. ٠
 - Provide new insight to the CP violating phase in the B_s system. ٠

L1 tracking opens new opportunities for the L1 trigger, such as the reconstruction of light meson candidates from hadronic decays : $B_s^0 \rightarrow \phi \phi$ used as case of study.

To optimize signal efficiency and event rate, three different working points for event selection used: loose, medium and tight. Differing mainly for $p_T(B_s^0) (\geq 10 \text{ or } \geq 12 \text{GeV})$ and $M_{\phi\phi}$ window.

р. 1:	Efficier	Rate (kHz)		
Baseline	L1	Offline	< PU > = 200	
Loose	36.15 ± 0.37	60.78 ± 0.50	44.70 ± 1.65	-
Medium	30.28 ± 0.33	50.04 ± 0.44	15.00 ± 0.95	
Tight	30.25 ± 0.33	49.96 ± 0.43	10.02 ± 0.78	

@ <PU> = 200:

- ~ **30**% signal efficiency achievable already at L1 at a rate ~ 15 kHz;
- computation made possible by FPGAs;

Adriano Di Florio

PANIC 2021- 05-12 September 2021

 $\overline{u}, \overline{c},$

B

S

Summary & conclusions

Dummy Summary

- > **Run3** is coming with interesting prospects, **new triggering** and **data-taking** techniques and **doubled** statistics.
- \blacktriangleright Extensive upgrade program for CMS & ATLAS for HL-LHC together with $\times 10$ statistics.
- $\triangleright B_s^0 \rightarrow J/\psi\phi$:
 - will benefit from HL-LHC 3000fb⁻¹ to shrink statistical uncertainties (still dominant);
 - much more precise $c\tau$ measurement thanks to the improved tracking performance;
- $\succ B_{d/s} \rightarrow \mu\mu$:
 - significant improvement in mass resolution leads to better separation;
 - observation of $B_d \rightarrow \mu\mu$ at 5σ or more;
 - much more precise measurement of the branching fractions and other observables;
- $\succ \tau \rightarrow \mu \mu \mu$:
 - full Run2 & Run3 statistics awaits;
 - at HL-LHC extensive studies from ATLAS show;
 - will take advantage of extended $|\eta|$ coverage (up to 4);
- $\succ B_s^0 \rightarrow \phi \phi$:
 - interesting showcase for L1 tracking: @<PU>=200 signal already visible at L1;
- $\succ B^0 \rightarrow K^{*0} \mu \mu:$
 - will benefit from HL-LHC 3000fb^{-1} and improved tracking: P'_5 precision improved up to ~order of magnitude for both ATLAS & CMS;

The HL-LHC and CMS & ATLAS Phase-2 upgrade will extend the physics reach of both experiments significantly.

Thanks!

"I am putting myself to the fullest possible use, which is all I think that any conscious entity can ever hope to do"