Understanding $^{40}\mathrm{K}$: the KDK (potassium decay) experiment P. Di Stefano¹ for the KDK collaboration (Queen's, Oak Ridge, Tennessee, Warsaw, Munich, Jyvaskyla) ¹Queen's University, Kingston, Canada ### ⁴⁰K and electron capture - Electron capture (EC, EC*) emits $\lesssim 3$ keV Auger electrons and X-rays from Ar - EC* can be tagged by 1.4 MeV γ , EC can't - Causes background in signal region of dark matter searches, in particular those using NaI. May constrain DAMA/LIBRA dark mater claim [1] - EC never observed! Predicted ratio of branching ratios $\rho = \frac{I_{EC}}{I_{FC}}$: 0.005–0.03 - Rare decay, of interest to nuclear theory - Existence of EC debated in geochronology [2]. Has implication for K-Ar and Ar-Ar dating [3] # Measuring EC with the Modular Total Absorption Spectrometer (MTAS) - KCI source enriched in 40 K, activity \sim - Small, keV-threshold SDD detector to trigger on X/Augers from EC/EC* - Large, efficient NaI veto to tag 1.4 MeV γ from EC*: MTAS at Oak Ridge ### Determining MTAS tagging efficiency ε - Need to know ε , efficiency with which MTAS tags 1.4 MeV γ when SDD triggers on an EC* X/Auger - Use 54 Mn, which decays overwhelmingly by EC* ($E_{\gamma}=835$ keV) to 54 Cr, and compare coincident to uncoincident Cr counts - Source has same geometry as 40 K - SDD allows clear resolution of K_{α} , K_{β} lines, identification of 55 Fe BG - Accounting for difference in E_{γ} and other factors, tagging efficiency $\varepsilon = 0.9789(6)$ [4] precision is important! # 44-day 40 K run After minor stability cuts, and with signal region blinded: ## Modelling blind region, and analysis Simultaneous fit of coincident (open) and uncoincident (simulation of blind) spectra: - Shape of Ar signal, and of Cl and K fluorescent backgrounds, common to both spectra - Intensities, and flat and exponential backgrounds, independent - Likelihood function to determine ρ includes - Coincident and uncoincident Ar counts - Difference in X-ray emission probabilities for EC and EC* - MTAS tagging efficiency ε (EC* looks like EC) - Spurious background coincidences (EC looks like EC*) # **Sensitivity of experiment** - Given measured ε and known backgrounds, $\pm 15\%$ relative on $\rho=0.02$ attainable - Will also perform likelihood ratio test with null hypothesis ($\rho=0$) - Unblinding expected this fall! #### References - [1] J. Pradler, et al., Phys. Lett. B 720 (2013) 399. - [2] K. Min, et al., Geochimica et Cosmochimica Acta 64 (2000) 73. - [3] J. Carter, et al., Geochronology 2 (2020) 355. - [4] M. Stukel, et al., Nucl. Instr. Meth. Phys. Res. A 1021 (2021) 165593. https://indico.lip.pt/event/592/