

Understanding $^{40}\mathrm{K}$: the KDK (potassium decay) experiment

P. Di Stefano¹ for the KDK collaboration (Queen's, Oak Ridge, Tennessee, Warsaw, Munich, Jyvaskyla)

¹Queen's University, Kingston, Canada

⁴⁰K and electron capture

- Electron capture (EC, EC*) emits $\lesssim 3$ keV Auger electrons and X-rays from Ar
- EC* can be tagged by 1.4 MeV γ , EC can't
- Causes background in signal region of dark matter searches, in particular those using NaI. May constrain DAMA/LIBRA dark mater claim [1]
- EC never observed! Predicted ratio of branching ratios $\rho = \frac{I_{EC}}{I_{FC}}$: 0.005–0.03
- Rare decay, of interest to nuclear theory
- Existence of EC debated in geochronology [2]. Has implication for K-Ar and Ar-Ar dating [3]

Measuring EC with the Modular Total Absorption Spectrometer (MTAS)

- KCI source enriched in 40 K, activity \sim
- Small, keV-threshold SDD detector to trigger on X/Augers from EC/EC*
- Large, efficient NaI veto to tag 1.4 MeV γ from EC*: MTAS at Oak Ridge

Determining MTAS tagging efficiency ε

- Need to know ε , efficiency with which MTAS tags 1.4 MeV γ when SDD triggers on an EC* X/Auger
- Use 54 Mn, which decays overwhelmingly by EC* ($E_{\gamma}=835$ keV) to 54 Cr, and compare coincident to uncoincident Cr counts
- Source has same geometry as 40 K

- SDD allows clear resolution of K_{α} , K_{β} lines, identification of 55 Fe BG
- Accounting for difference in E_{γ} and other factors, tagging efficiency $\varepsilon = 0.9789(6)$ [4] precision is important!

44-day 40 K run

After minor stability cuts, and with signal region blinded:

Modelling blind region, and analysis

Simultaneous fit of coincident (open) and uncoincident (simulation of blind) spectra:

- Shape of Ar signal, and of Cl and K fluorescent backgrounds, common to both spectra
- Intensities, and flat and exponential backgrounds, independent
- Likelihood function to determine ρ includes
- Coincident and uncoincident Ar counts
- Difference in X-ray emission probabilities for EC and EC*
- MTAS tagging efficiency ε (EC* looks like EC)
- Spurious background coincidences (EC looks like EC*)

Sensitivity of experiment

- Given measured ε and known backgrounds, $\pm 15\%$ relative on $\rho=0.02$ attainable
- Will also perform likelihood ratio test with null hypothesis ($\rho=0$)
- Unblinding expected this fall!

References

- [1] J. Pradler, et al., Phys. Lett. B 720 (2013) 399.
- [2] K. Min, et al., Geochimica et Cosmochimica Acta 64 (2000) 73.
- [3] J. Carter, et al., Geochronology 2 (2020) 355.
- [4] M. Stukel, et al., Nucl. Instr. Meth. Phys. Res. A 1021 (2021) 165593.

https://indico.lip.pt/event/592/