

Dark sector searches at Belle

September 8, 2021

Christos Hadjivasiliou

PNNL, Richland WA, United States

on behalf of the Belle collaboration

PNNL is operated by Battelle for the U.S. Department of Energy

PANIC 2021

Pacific Northwest

Introduction

• $B^0 \rightarrow A'A'$

- A' is a visible, promptdecaying dark photon.
- h' is a virtual dark Higgs, coming from the kinetic mixing with the H and decaying into an A' pair.
- $e^+e^- \rightarrow \mu^+\mu^- Z'_{L_{\mu}-L_{\tau}} \rightarrow 4\mu$ $B^0 \rightarrow \Lambda \psi_{\rm DS}$
 - $L_{\mu} L_{\tau}$ is the leptonnumber difference.
 - Assume prompt decay.
 - We only reconstruct the $Z' \rightarrow \mu^+ \mu^-$ decay.

• $\psi_{\rm DS}$ is a GeV-scale dark sector antibaryon. Y is a TeV-scale bosonic

colored mediator. Use hadronic tagging.

KEKB and Belle

$B^0 \rightarrow A'A'$: Introduction. JHEP 04 191.

- A short-lived and 100% visible dark photon is assumed.
 - Target final states: 5 decay modes $(4e, 2e2\mu, 4\mu, 2e2\pi, 2\mu2\pi)$ combined to $B^0 \rightarrow A'A'$.
 - Kinematically allowed A' mass is 10 2620 MeV: 10 and 20 MeV intervals.

Pacific

Northwest

Relative A' branching fraction. PRD **79** 115008

Relative B^0 branching fraction for each final state

$B^0 \rightarrow A'A'$: Background suppression

• Possible Standard Model resonances to be identified as A' are rejected:

- $J/\psi \rightarrow l^+l^-$ and $\psi(2S) \rightarrow l^+l^-$.
- $D^0 \rightarrow \pi^+ \pi^-$, including $K^- \pi^+$ with misidentified K^{\pm} .
- Light mesons $(K_S^0, \rho^0, \phi, \text{ etc.})$.

• $e^+e^- \rightarrow q\bar{q}$ continuum events suppression using 16 event-shape variables:

- Including B^0 candidate momentum direction, angle between thrust axis of B^0 candidate and other particles, and (modified) Fox-Wolfram moments.
- Only applied for $l^+l^-\pi^+\pi^-$ final states. No background in the four-lepton modes.
- Fischer discriminant training is performed using the TMVA package.
- Small amount of combinatorial background:
 - Leptons mostly from semileptonic decays of quarks. (Missing energy from neutrinos).

$B^0 \rightarrow A'A'$: Event reconstruction

- Require at least four charged tracks, including at least one e^+e^- or $\mu^+\mu^-$ pair.
 - Each track should appear near the interaction point with a good track fitting.
- After combining two A' to form a B^0 , five variables, defined in the center-of-mass frame, are used to judge the quality of B^0 .
 - $M_{\rm bc}$: beam-energy constrained mass.
 - ΔE: energy difference between beam and B^0 candidate.
 - Missing energy of the event.
 - $\Delta M_{A'}$: $M_{A'_1} M_{A'_2}$.

Pacific

Northwest

- $\sum \delta M_{A'}$: $|M_{A'_1} m_{A'}| + |M_{A'_2} m_{A'}|$. ✓ $M_{A'_{1,2}}$: reconstructed $A'_{1,2}$ mass.
 - $\checkmark m_{A'}$: target A' mass.

PANIC 2021

- No significant excess of signal is observed \rightarrow upper limits are obtained.

$$\mathcal{B}(B^0 \to A'A') \simeq 7 \times 10^{-7} \times \lambda^2 \times V_{A'A'}^{1/2} \times \frac{V_{A'A'} + 12m_{A'}^4/m_{B^0}^4}{(1 - m_{h'}^2/m_{B^0}^2)^2} \qquad V_{A'A'} =$$

PANIC 2021

 $e^+e^-
ightarrow \mu^+\mu^- Z'_{L_\mu-L_\tau}$: Introduction

Branching ratio as a function of the Z' mass

- Z' coupling by BaBar: PRD **94** 011102.

$e^+e^- \rightarrow \mu^+\mu^- Z'_{L_{\mu}-L_{\tau}}$: Event reconstruction

- Require four charged tracks, and the sum of charges should be zero.
 - At least two same-signed tracks are identified as muons.
- Selection criteria:
 - The energy remaining in the ECL (Electromagnetic Calorimeter) without track association < 200 MeV.
 - Apply $m_{I/\psi} \pm 30 \text{ MeV}$ and $m_{\Upsilon(1S)} \pm 100 \text{ MeV}$ 100 MeV rejection cuts to the di-muon invariant mass.
 - Four-muon invariant mass is within initial beam energy ± 500 MeV.

- Background in Belle data:
 - $e^+e^- \rightarrow 2\mu J/\psi$ or $2\pi J/\psi$
 - $e^+e^- \rightarrow p\bar{p} \text{ or } n\bar{n}$
 - $e^+e^- \rightarrow 4\mu$
 - $e^+e^- \rightarrow 4\pi$
 - $e^+e^- \rightarrow 2e2\mu$

• $e^+e^- \rightarrow 2\mu 2\tau$ • $e^+e^- \rightarrow 2\mu$ • $e^+e^- \rightarrow 2\tau$ • $e^+e^- \rightarrow q\bar{q}$ • • • •

$B^0 \rightarrow \Lambda \psi_{\rm DS}$: Introduction

- *B*-Mesogenesis: Baryogenesis and Dark Matter from B Mesons. PRD 99 035031.
 - $\mathcal{B}(B^0 \to \Lambda \psi_{\rm DS} + \text{mesons}) > 10^{-4}$ ✓ From A_{SL}^q world averages.
 - $\mathcal{B}(B^0 \to \Lambda \psi_{\rm DS}) \lesssim 2 \times 10^{-4}$
 - \checkmark ALEPH search at the Z peak. EPJC **19** 213.
 - ATLAS & CMS: $m(\psi_{\rm DS}) \lesssim 3.5 \ {\rm GeV}/c^2$ ✓ JHEP **10** 244, JHEP **02** 144.
- We use 711 fb⁻¹ of $\Upsilon(4S) = 772 \times 10^6 B\overline{B}$.
- Signal side: $B^0 \to \Lambda \psi_{\rm DS}$
 - Reconstruct: $\Lambda \rightarrow p\pi^-$
 - 1.0 GeV $\leq m(\psi_{\rm DS}) \leq 4.2$ GeV
- Tag side: $B^0 \rightarrow$ hadronic tagging.

 B_d^0

Pacific $B^0 \rightarrow \Lambda \psi_{\rm DS}$: Event reconstruction Northwest

- No extra tracks in the event.
- *B*-tag cuts applied:
 - $5.27 \text{ GeV}/c^2 < M_{\text{hc}} < 5.29 \text{ GeV}/c^2$
 - $-0.06 \text{ GeV} < \Delta E < 0.06 \text{ GeV}$
- $-0.88 < \cos \theta_{\rm miss} < 0.95$
- Λ selection: momentum dependent criteria based on four parameters.
- Proton PID: $\mathcal{L}_{p/K} > 0.6$, $\mathcal{L}_{p/\pi} > 0.6$
- Suppress continuum events:
 - Optimize a Punzi FOM: R_2 , $\cos \theta_{\text{TBTO}}$
 - R_2 : Event-based ratio of the second to zeroth Fox-Wolfram moments.
 - $\cos \theta_{\text{TBTO}}$: The cosine of the angle between the thrust axis of the Λ and

the thrust axis of the tagged B.

- Signal region: Based on the energy remaining in the ECL without track association. (We require that the expected number of background events \approx 3).
- Background mostly comes from:
 - Continuum: $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s, c)$
 - $B \rightarrow \text{baryon baryon} + (\text{meson})$.
 - In addition, small contributions from charmonium decays.

$B^0 \rightarrow \Lambda \psi_{\rm DS}$: Preliminary results

- No significant excess of signal is observed \rightarrow upper limits are obtained.
- We calculate upper limits using a counting method (based on a Poisson "on/off" model): $\mathcal{O}(10^{-5})$.

90% CL upper limits on $\mathcal{B}(B^0 \to \Lambda \psi_{\rm DS})$

Pacific

Northwest

Dark sector searches: Summary

No significant observation for dark sector.

- $B^0 \rightarrow A'A'$ result was published in JHEP **04** 191.
 - 90% CL upper limits on the branching fraction are mostly $\mathcal{O}(10^{-8})$.
 - Higgs portal coupling constraint versus m(h') and m(A') is obtained.
- $e^+e^- \rightarrow \mu^+\mu^- Z'_{L_{\mu}-L_{\tau}}$ provides a limit for the Z'll coupling constant.
 - The Belle result is competitive with the BaBar result.
- $B^0 \to \Lambda \psi_{\rm DS}$ result is the first search for *B*-Mesogenesis.
 - The upper limits, $\mathcal{O}(10^{-5})$, are by an order of magnitude better than ALEPH bounds.

September 8, 2021

15

Thank you

PANIC 2021

