Determination of 118 Sn(p, γ) 119 Sb cross-section at astrophysical energies from X-ray emission yields

Manuel Xarepe

September 5th, 2021

Ciências ULisboa

Index

• Introduction:

- Motivation for studying 118 Sn(p, γ) 119 Sb reaction
- Activation method (using X-ray yields)
- Experimental methodology
- Study with natural Sn-targets
- Conclusions and Future Work

Abundance of elements in the universe

Reaction flux generated by Type II supernovae

Src: M. Arnould and S. Goriely Physics Reports, vol. 384, no. 1-2, pp. 1–84, 2003.

Src: W. Rapp et al. The AstroPhys. J., vol. 653, no. 1, p. 474, 2006.

Motivation for Studying ¹¹⁸Sn(p,γ)¹¹⁹Sb

Activation Method

Limitations:

- $t_{irradiation}$ e $t_{acquisition}$ are proportional to $t_{1/2}$
- The created isotope must be radioactive
- Decay branching to excited states must be significant

Electron Capture Decay

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/radact2.html

Target Production

- Target produced at LIP's NUC-RIA laboratory in FCUL, using the evaporation method
- Targets were evaporated over two different backings:
 - aluminium
 - copper

Target Activation

In-Beam RBS

9

 $E_p = 3.29 \text{ MeV}, \theta_{lab} = 150^{\circ}$

Study with natural Sn

Isotope	Abundance [%]	Reaction	$t_{1/2}$
504/3°	Servic Current	product	0 V 2000
¹¹⁶ Sn	14.54 ± 0.09	¹¹⁷ Sb	2.80 ± 0.01 (h)
¹¹⁷ Sn	7.68 ± 0.09	¹¹⁸ Sb	3.6 ± 0.1 (min)
¹¹⁸ Sn	24.22 ± 0.09	¹¹⁹ Sb	38.2 ± 0.2 (h)
¹¹⁹ Sn	8.59 ± 0.09	120 Sb	15.89 ± 0.04 (min)
120 Sn	32.58 ± 0.09	121 Sb	stable

- Contribution from ¹¹⁷Sn, ¹¹⁹Sn and ¹²⁰Sn were considered negligible
- The contributions from the decay of ¹¹⁷Sb need to be considered
- From this we were able to extract the cross-section for the ¹¹⁶Sn(p,γ)¹¹⁷Sb reaction

X-ray acquisition

Activated target

SDD detectors

- Time properties of the decay were studied
- The total number of decays were deducted by fitting a function
- The contribution of the decay of interest was disentangled from others

Accumulation curve - Study

Gnuplot fit

Geant4 Simulation

Accumulated spectrum

Accumulation spectrum - Low energy

Cross-section Calculation

Cross-section calculated using Ka yields and γ yields are the same: validating the method

Cross-section evaluation

S-factor evaluation

Conclusions

- Activation method was successful
- Simulations showed promising results
- 118 Sn(p, γ) 119 Sb reaction cross-sections are compatible with theory
- ${}^{116}Sn(p,\gamma){}^{117}Sb$ reaction cross-sections in agreement with literature
- Validation that X-ray yields can be complementary or a substitute to γ-ray yields

Future work

• Calculate the cross-section using low energy X-ray

• Produce and characterize a highly enriched target of ¹¹⁸Sn

 Activate at several energies in order to extract the energy dependence of the cross-section and of the corresponding astrophysical S-factor

Thank you very much!

<u>M. Xarepe</u>^{1,2,3}, D Galaviz^{1,2,3}, E. Galiana^{1,2,3}, E. Alves⁴,F. G. Barba^{1,2,3}, J. P. Marques^{1,2,3}, J. M. Sampaio^{1,2,3}, J. Rocha⁴, L. Peralta^{1,2,3}, P. Teubig^{1,2,3}, R. Pestana^{1,2,3}, R. Pires^{1,2,3}

high energy p-RBS

Simulation - Detector efficiency

Accumulation spectrum - Ep=3.66 MeV

Accumulation spectrum - Ep=3.66 MeV

24

Cross-section Calculation - Absolute method

 N_{peak}^{part} = Area under the peak;

 N_D^{irr} = Number of existing ¹¹⁹Sb at the end of the irradiation;

N_{decay} = Total number of decays during acquisition;

 σ = Cross-section;

 $\Phi_{\rm h}$ = Proton flux;

 N_A = Surface density of the target;

Cross-section Calculation - relative method

Cross-section Calculation

		$^{118}\mathrm{Sn}(p,\gamma)^{119}\mathrm{Sb}$			
	E_p	2.8	3.29	3.66	
σ [mbarn]	γ	0.08 ± 0.01	0.28 ± 0.01	1.6 ± 0.4	
absolute	$K\alpha$	0.08 ± 0.01	0.28 ± 0.01	1.6 ± 0.3	
σ [mbarn]	γ	0.053 ± 0.008	0.27 ± 0.02	1.33 ± 0.07	
relative	$K\alpha$	0.053 ± 0.008	0.27 ± 0.02	1.34 ± 0.08	

	$^{116}\mathrm{Sn}(p,\gamma)^{117}\mathrm{Sb}$				
E_p	2.8	3.29	3.66		
$\sigma \text{ [mbarn]}$ absolute	0.048 ± 0.006	0.19 ± 0.02	0.9 ± 0.2		
$\begin{array}{c} \sigma [\mathrm{mbarn}] \\ \mathrm{relative} \end{array}$	0.035 ± 0.005	0.22 ± 0.01	0.077 ± 0.05		

First irradiation - Current study

In-line y acquisition

In-line y acquisition

First excited states of 119 Sb(g.s 5/2⁺):

- 270.52 keV -> $J^{\pi} = 7/2^+$
- 644.03 keV -> $J^{\pi} = 1/2^+$
- 699.88 keV -> $J^{\pi} = 3/2^+, 5/2^+$

Cross-section Calculation - absolute method

Considering mean flux;

$$\sigma = \frac{N_D \lambda}{N_A \cdot \phi_b \cdot (1 - e^{-\lambda t_{irrad}})}$$
$$\sigma = \frac{N_D \lambda}{N_A} \left[\phi_b^n \left(1 - e^{-\lambda t_n} \right) + \sum_{i=1}^{n-1} \phi_b^i \left(1 - e^{-\lambda t_i} \right) \prod_{j=i+1}^n e^{-\lambda t_j} \right]^{-1}$$

ATITT \

Considering discrete flux

	Reaction	$^{118}\mathrm{Sn}(p,\gamma)^{119}\mathrm{Sb}$		$^{116}\mathrm{Sn}(p,\gamma)^{117}\mathrm{Sb}$	
	E_p [MeV]	3.66 ± 0.01	3.29 ± 0.02	3.66 ± 0.01	3.29 ± 0.02
σ [mbarn]	γ	1.6 ± 0.4	0.28 ± 0.01		
mean flux	$\mathbf{K}\alpha$	1.6 ± 0.4	0.28 ± 0.01	1.0 ± 0.2	0.23 ± 0.02
σ [mbarn]	γ	1.6 ± 0.3	0.27 ± 0.01		
discrete flux	$\mathbf{K}\alpha$	1.6 ± 0.2	0.27 ± 0.01	1.0 ± 0.2	0.22 ± 0.02

Cross-section Calculation - relative method

Considering mean flux;

$$\sigma = \left(\frac{d\sigma}{d\Omega}\right)_{Ruth} \frac{4\pi N_D^{irr} \epsilon_p}{1 - e^{-\lambda t}} \frac{\lambda t}{w_A N_p}$$

Considering discrete flux

$$\sigma = \frac{4\pi\epsilon_p N_D^{irr}}{w_A} \cdot \left(\frac{d\sigma}{d\Omega}\right)_{Ruth} \cdot \left[\frac{N_p^n}{\lambda t_n} \left(1 - e^{-\lambda t_n}\right) + \sum_{i=1}^{n-1} \frac{N_p^i}{\lambda t_i} \left(1 - e^{-\lambda t_i}\right) \prod_{j=i+1}^n e^{-\lambda t_j}\right]^{-1}$$

	Reaction	$^{118}\mathrm{Sn}(p,\gamma)^{119}\mathrm{Sb}$		$^{116}\mathrm{Sn}(p,\gamma)^{117}\mathrm{Sb}$	
	E_p [MeV]	3.66 ± 0.01	3.29 ± 0.02	3.66 ± 0.01	3.29 ± 0.02
Cross-section [mbarn]	γ	1.3 ± 0.1	0.27 ± 0.02		
mean flux	$\mathbf{K}\alpha$	1.31 ± 0.06	0.27 ± 0.01	0.8 ± 0.1	0.24 ± 0.02
Cross-section [mbarn]	γ	1.3 ± 0.1	0.27 ± 0.02		
discrete flux	Kα	1.31 ± 0.08	0.27 ± 0.01	0.9 ± 0.2	0.23 ± 0.02

-1