

5-10 September 2021 Online Europe/Lisbon timezone

# Trojan Horse Method for n-induced reaction investigations at astrophysical energies



#### Maria Letizia Sergi

for the AsFiN research group



# Indirect Method in Nuclear Astrophysics

Determination of astrophysically relevant cross section by selecting a precise reaction mechanism in a suitable chosen reaction and through the application of some theoretical consideration:

Coulomb dissociation

Asympotic Normalization Coefficient (ANC)

Trojan Horse Method (THM)

<u>Usefull references about THM:</u> -G. Baur et al., Nucl. Phys. A 458, 188 (1986) -R. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014) -C. Spitaleri et al., EpJA 55, 161 (2019) -A. Tumino et al., Ann. Rev. Nuc. Part. Science, 71, available from Sept.2021

...allows to deduce a chargedparticle binary-reaction cross section inside the Gamow window by selecting the Quasi-Free (QF) contribuiton to an appropriate three-body reaction.

# The Trojan Horse Method I

- ✓ The QF A + a → b + B + s reaction between the projectile A and the target a can be described by the polar-diagram:
- ✓ Upper pole describes the break-up process of nucleus *a* in its "x" and "s" constituents. <u>The break-up is Quasi-Free if *s* maintains in the exit channel the same momentum distribution as in *a*;
  </u>



- Lower pole describes the astrophysically relevant two-body reaction A(x,b)B;
- $\checkmark$  The nucleus *a* (the so-called "TH-nucleus") is chosen because of:
  - its large amplitude in the  $a=x \oplus s$  cluster configuration;
  - its relatively low-binding energy;
  - Its known x-s momentum distribution  $|\Phi(\vec{p}_s)|^2$  in a.
- ✓ In this picture, "s" behaves as *spectator* while nucleus "x" is the *participant* of the astrophysical A(x,b)B reaction (Impulse Approximation approach).<sub>3</sub>

# The Trojan Horse Method II

S

Х

 $d\sigma$ 

The A(a,cC)s is induced at energies of the order **a** of 20-50 MeV, higher than the Coulomb barrier in the entrance A-a channel.

The A-x interaction occurs directly in the nuclear field, thus **Coulomb suppression effects are naturally removed.** 

The **cross section** for the A(a,bB)s process can be derived in the simple PWIA approach as

 $\frac{\mathrm{d}^3\sigma}{\mathrm{d}E_c\mathrm{d}\Omega_c\mathrm{d}\Omega_c} \propto \mathrm{KF} \cdot |\Phi(\vec{p_s})|^2$ 

 $\rightarrow |\vec{\Phi}(p_s)|^2$  is a key quantity to be determined in each THM experiment!

The A-x reaction is induced at energies E<sub>c.m.</sub>=E<sub>cC</sub>-Q<sub>2body</sub>, where E<sub>bB</sub> is the relative c-C energy and Q<sub>2body</sub> the A(x,c)C Q-value. This allows to cover the energy region of interest for astrophysics by using only a mono-energetic beam!



# **THM on neutron induced reaction**

 $\checkmark$  Deuterium as a virtual neutron source;



# The <sup>14</sup>N(n,p)<sup>14</sup>C reaction

... astrophysical importance

<u>s-processes</u>: <sup>14</sup>N is very abundant since it is the dominant product of hydrogen burning in the CNO cycle, step prior to s process. Hence, due to its high cross section, the <sup>14</sup>N(n,p)<sup>14</sup>C reaction acts as a strong **neutron poison** in the chain of reactions for the production of heavier elements.

Origin of fluorine: the He burning shell in AGBs is the primary site for fluorine synthesis, via the reaction chain

 $^{14}N(\alpha,\gamma)^{18}F(\beta^{+})^{18}O(p,\alpha)^{15}N(\alpha,\gamma)^{19}F$ 

 $\rightarrow$  The protons captured by <sup>18</sup>O are mostly those produced in the <sup>14</sup>N(n,p)<sup>14</sup>C reaction

# The <sup>14</sup>N(n,p)<sup>14</sup>C reaction

#### ... astrophysical importance

<u>s-processes</u>: <sup>14</sup>N is very abundant since it is the dominant product of hydrogen burning in the CNO cycle, step prior to s process. Hence, due to its high cross section, the <sup>14</sup>N(n,p)<sup>14</sup>C reaction acts as a strong **neutron poison** in the chain of reactions for the production of heavier elements.

Origin of fluorine: the He burning shell in AGBs is the primary site for fluorine synthesis, via the reaction chain

 $^{14}N(\alpha,\gamma)^{18}F(\beta^+)^{18}O(p,\alpha)^{15}N(\alpha,\gamma)^{19}F$ 

 $\rightarrow$  The protons captured by <sup>18</sup>O are mostly those produced in the <sup>14</sup>N(n,p)<sup>14</sup>C reaction



#### ... state of the art

Wallner et al., Astronomical Society of Australia, (2012), 29, 115

# The <sup>14</sup>N(n,p)<sup>14</sup>C reaction

... astrophysical importance

<u>s-processes</u>: <sup>14</sup>N is very abundant since it is the dominant product of hydrogen burning in the CNO cycle, step prior to s process. Hence, due to its high cross section, the <sup>14</sup>N(n,p)<sup>14</sup>C reaction acts as a strong **neutron poison** in the chain of reactions for the production of heavier elements.

Origin of fluorine: the He burning shell in AGBs is the primary site for fluorine synthesis, via the reaction chain

 $^{14}N(\alpha,\gamma)^{18}F(\beta^+)^{18}O(p,\alpha)^{15}N(\alpha,\gamma)^{19}F$ 

 $\rightarrow$  The protons captured by <sup>18</sup>O are mostly those produced in the <sup>14</sup>N(n,p)<sup>14</sup>C reaction



Wallner et al., Astronomical Society of Australia, (2012), 29, 115

## <sup>14</sup>N(n,p)<sup>14</sup>C studied by <sup>2</sup>H(<sup>14</sup>N,p<sup>14</sup>C)<sup>1</sup>H via the THM



- The experiment was performed @LNS-INFN (Catania)
- 2) The two body reaction <sup>14</sup>N(n,p)<sup>14</sup>C (Q-value=0.626 MeV) was studied by applying the THM to the reaction <sup>2</sup>H(<sup>14</sup>N, p <sup>14</sup>C)p (Q-value=-1.599 MeV) by properly selecting the corresponding quasi-free contribution (QF) to the total reaction yield;
- 3) Deuteron "d" was used as TH-nucleus
- 4) Use of large area 5x5 cm<sup>2</sup> DSSSD

| Detectors               | Thickness<br>[µm] | θ<br>[deg]     | r<br>[cm] | Δθ<br>[deg] |
|-------------------------|-------------------|----------------|-----------|-------------|
| A <sub>1</sub> (STRIP)  | 500               | $5.0\pm0.1$    | 80        | ±1.8        |
| ΔA <sub>1</sub> (STRIP) | 20                | $5.0 \pm 0.1$  | 80        | ±1.8        |
| B <sub>1</sub> (STRIP)  | 1000              | $25.0 \pm 0.1$ | 25        | ±5.7        |
| B <sub>2</sub> (PSD)    | 500               | $40.0\pm0.1$   | 25        | ±5.7        |



## <sup>14</sup>N(n,p)<sup>14</sup>C studied by <sup>2</sup>H(<sup>14</sup>N,p<sup>14</sup>C)<sup>1</sup>H via the THM

#### **Reaction channel selection....**





- Good agreement with the theoretical value Q<sub>theor</sub>=-1.599 MeV
- correct selection of the reaction channel;
- good calibration procedure
- No other competing channels in the exit channel.

## Study of the relative energy two dimensional plot

E<sub>15N\*</sub> (MeV)

 $E_{\star}$ 

 $J^{\pi}; T$ 

By using both the angles and energies of the <sup>14</sup>C and proton in the exit channel, it has been possible to reconstruct their relative energy  $E_{12}$ . Additionally, the kinematical properties of the UNDETECTED proton were reconstructed by using energy-momentum conservation laws.





Nuclear Physics Inputs: Cross section measurements at BBN energies (≤100 keV) for <sup>7</sup>Li formation/destruction <sup>3</sup>He(α,γ)<sup>7</sup>Be(e<sup>-</sup>,v<sub>e</sub>)<sup>7</sup>Li(p,α)α and for the ones involving <sup>7</sup>Be <sup>7</sup>Be(n,p)<sup>7</sup>Li <sup>7</sup>Be(n,α)<sup>4</sup>He

# RIB+n: THM investigation of the <sup>7</sup>Be(n,α)<sup>4</sup>He reaction (BELICOS)



- The two body reaction <sup>7</sup>Be(n,α)α (Q-value=18.99 MeV) was studied by applying the THM to the reaction <sup>2</sup>H(<sup>7</sup>Be, α <sup>4</sup>He)p (Q-value=16.765 MeV) by using a 20 MeV <sup>7</sup>Be beam;
- 2) Deuteron "d" was used as TH-nucleus
- 3) Use of large area 6x6 cm<sup>2</sup> IC & DSSSD
- 4) Performed at INFN-LNL in collaboration with CRIB-RIKEN (S. Hayakawa)

## The <sup>7</sup>Be(n,α)<sup>4</sup>He cross section data at BBN energies



## The <sup>7</sup>Be(n,α)<sup>4</sup>He cross section data at BBN energies



# The impact of such result has been evaluated through the BBN code of Kawano (1988) discussed in Pizzone 2014

| Reaction Rate                                   | <sup>7</sup> Li/H       | <sup>7</sup> Be/H       | $(^{7}Li/H+^{7}Be/H)$                    |
|-------------------------------------------------|-------------------------|-------------------------|------------------------------------------|
| Pizz2014+Hou2015                                | $2.840 \times 10^{-11}$ | $4.149 \times 10^{-10}$ | $4.433 \times 10^{-10}$                  |
| Pizz2014+Lam17                                  | $2.845 \times 10^{-11}$ | $4.156 \times 10^{-10}$ | $4.441 \times 10^{-10}$                  |
| Pizz2014+Present work                           | $2.67 \times 10^{-11}$  | $3.99 \times 10^{-10}$  | $4.26 \times 10^{-10}$                   |
| Halo Stars Observ. as in Sbordone et al. (2010) |                         |                         | $(1.58^{+0.35}_{-0.28}) \times 10^{-10}$ |

Note. The first three rows display the primordial abundances using the  ${}^{7}Be(n, \alpha)^{4}He$  reaction rates of Hou et al. (2015) (Hou2015), Lamia et al. (2017) (Lam17), and the present work. The last row refers to the  ${}^{7}Li$  abundance for halo stars as reported in Sbordone et al. (2010).



THE ASTROPHYSICAL JOURNAL LETTERS, 915:L13 (14pp), 2021 July 1 © 2021. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ac061f



#### Constraining the Primordial Lithium Abundance: New Cross Section Measurement of the <sup>7</sup>Be + n Reactions Updates the Total <sup>7</sup>Be Destruction Rate

S. Hayakawa<sup>1</sup>, M. La Cognata<sup>2</sup>, L. Lamia<sup>2,3,4</sup>, H. Yamaguchi<sup>1,5</sup>, D. Kahl<sup>6,19</sup>, K. Abe<sup>1</sup>, H. Shimizu<sup>1</sup>, L. Yang<sup>1,20</sup>, O. Beliuskina<sup>1,21</sup>, S. M. Cha<sup>7,22</sup>, K. Y. Chae<sup>7</sup>, S. Cherubini<sup>2,3</sup>, P. Figuera<sup>2</sup>, Z. Ge<sup>8,21</sup>, M. Gulino<sup>2,9</sup>, J. Hu<sup>10</sup>, A. Inoue<sup>11</sup>, N. Iwasa<sup>12</sup>, A. Kim<sup>13</sup>, D. Kim<sup>13,22</sup>, G. Kiss<sup>8,23</sup>, S. Kubono<sup>1,8,10</sup>, M. La Commara<sup>14,15</sup>, M. Lattuada<sup>2,3</sup>, E. J. Lee<sup>7</sup>, J. Y. Moon<sup>16</sup>, S. Palmerini<sup>17,18</sup>, C. Parascandolo<sup>15</sup>, S. Y. Park<sup>13,24</sup>, V. H. Phong<sup>8,25</sup>, D. Pierroutsakou<sup>15</sup>, R. G. Pizzone<sup>2</sup>, G. G. Rapisarda<sup>2</sup>, S. Romano<sup>2,3,4</sup>, C. Spitaleri<sup>2,3</sup>, X. D. Tang<sup>10</sup>, O. Trippella<sup>17,18</sup>, A. Tumino<sup>2,9</sup>, and N. T. Zhang<sup>10</sup>



courtesy of Seiya Hayakawa

### **Thanks for your attention**

#### The <u>AsFin Group</u>







<u>@Catania</u> A. Bonasera, S. Cherubini, G. D'Agata, A. Di Pietro, P. Figuera, G.L. Guardo, M. Gulino, M. La Cognata, L. Lamia, D. Lattuada, M. Lattuada, A.A. Oliva, R.G. Pizzone, G.G. Rapisarda, S. Romano, D. Santonocito, M.L. Sergi, R. Spartà, C. Spitaleri, A. Tumino
 <u>@Perugia</u> M. Busso, S. Palmerini, M. Limongi, A. Chieffi, M.C. Nucci @<u>Padova</u> M. Mazzocco <u>@Napoli</u> M. La

#### **Collaborations**

Commara

- Cyclotron Institute, Texas A&M, USA: R. Tribble, V. Goldberg
- Texas A&M Commerce USA: C. Bertulani
- Florida State University USA: I. Wiedenhofer
- Notre Dame University USA: M. Wiescher, M. Couder
- C.N.S. Riken, Wako, Japan: S. Kubono, H. Yamaguchi, S. Hayakawa
- University of Taskent: B. Irgaziev, R. Yarmukhanmedov
- CIAE, Beijing, China: S. Zhou, C. Li, Q. Wen
- Nuclear Physics Institute, ASCR, Rez, Czech Rep.: V. Kroha, V. Burjan, J. Mrazek
- Nipne IFIN Bucharest: L. Trache
- ELI-NP Bucharest: C. Matei, D. Balabanski
- Atomki, Debrecen, Hungary: G. Kiss
- CSNSM, Orsay, France : A. Coc , F. Hammache, N. De Sereville
- University of Catalunya: J. Jose
- Rudjer Boskovic Institute Zagreb Croatia: N. Soic, M. Milin
- INFN Sez. Napoli e UniNA: D. Pierroutsakou, C. Parascandolo
- University of Pisa: S. Degl'Innoccenti, P. Prada Moroni







