Bridging the gap between hot, radioactive ion beams, and cold, precise ion trap measurements

Adam R. Vernon

"Exotic Molecules and Atoms group"

Massachusetts Institute of Technology

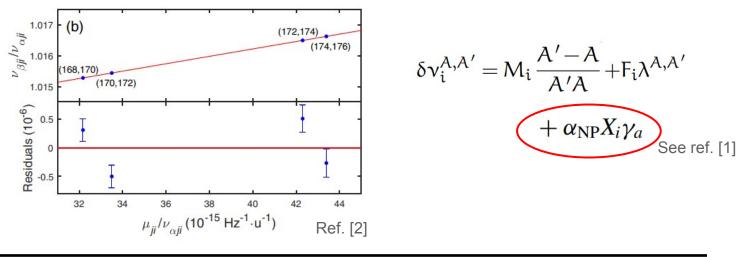
5th September 2021

PANIC 2021 conference

Why trap radioactive atoms

$$\delta v_{i}^{A,A'} = M_{i} \frac{A' - A}{A'A} + F_{i} \lambda^{A,A'}$$
$$\lambda^{A,A'} = \delta \left\langle r^{2} \right\rangle + \frac{C_{2}}{C_{1}} \delta \left\langle r^{4} \right\rangle + \frac{C_{3}}{C_{1}} \delta \left\langle r^{6} \right\rangle$$

- Precision isotope shift $\delta v_i^{A,A'}$ measurements:
 - In-flight radioactive techniques limited to MHz \rightarrow <r²>
 - Down to mHz precision possible with trapped ions [1]
 - $< r^4 >$ accessible at kHz level, gives access to surface thickness σ [2]


Massachusetts Institute of Technology

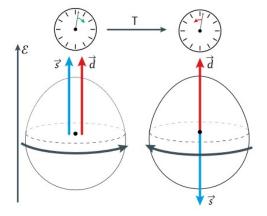
Adam R. Vernon, 5th September 2021 Slide 1

[1] T. Manovitz, PRL 2019, doi: 10.1103/PhysRevLett.123.203001.[2] P.-G. Reinhard, PRC 2020, doi: 10.1103/PhysRevC.101.021301

Why trap radioactive atoms

- Non-linear King plots for searches of new bosons [1] or higher-order nuclear effects e.g. Yb⁺ [2]
 - 5 stable spin 0 Yb isotopes, many more unstable at radioactive ion beam facilities

Adam R. Vernon, 5th September 2021 Slide 2


[1] J. C. Berengut PRR 2020, doi: 10.1103/PhysRevResearch.2.04344
[2] I. Counts et al. PRL 2020, doi: 10.1103/PhysRevLett.125.123002.

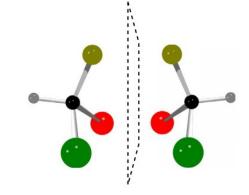
Why trap radioactive molecules

Sensitivity for BSM effects can be greatly enhanced by both radioactive species and polyatomic molecules for:

Searches for time-reversal/CP symmetry violation:

- Electron electric dipole moments with e.g. Ra²²⁵OCH₃⁺ [1]
- Nuclear electric dipole moments and magnetic quadrupole moments with e.g. RaOH⁺ [2, 3]

Adam R. Vernon, 5th September 2021 Massachusetts Institute of Technology [1] P. Yu and N. R. Hutzler, PRL 2021, doi: 10.1103/PhysRevLett.126.023003 [2] V. Flambaum, PRC 2019, doi: 10.1103/PhysRevC.99.035501 [3] D. E. Maison J. Chem. Phys. 2020, doi: 10.1063/5.0028983


Why trap radioactive molecules

Sensitivity for BSM effects can be greatly enhanced by both radioactive species and polyatomic molecules for:

Searches for dark matter candidates [4]

Searches for parity violation:

- Heavy isotopes in chiral molecules nuclear spin-independent PV [5]
- And nuclear spin-dependent effects PV [6]

[4] V. Flambaum PRD 2020 doi: 10.1103/PhysRevD.101.073004

Adam R. Vernon, 5th September 2021 Slide 4

[5] M. Quack "Fundamental and approximate symmetries, parity violation and tunneling in chiral and achiral molecules", Elsevier Inc., 2020 [6] Hao PRA 2020 10.1103/PhysRevA.102.052828

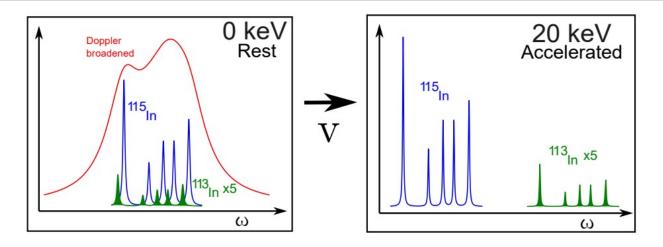
Radioactive ion beams	Ion trap spectroscopy

Radioactive ion beams	Ion trap spectroscopy
Hot environments (300-3000 K)	Doppler and collision limited, often cryogenic (~4 K)

Radioactive ion beams	Ion trap spectroscopy
Hot environments (300-3000 K) Low production rates (<1000 ions/s) and short lifetimes	Doppler and collision limited, often cryogenic (~4 K) Ion sources start with large sample sizes

Radioactive ion beams	Ion trap spectroscopy
Hot environments (300-3000 K) Low production rates (<1000 ions/s) and short lifetimes	Doppler and collision limited, often cryogenic (~4 K) Ion sources start with large sample
>keV beam energy extraction	sizes eV required for injection and traps ideally at ground potential

Radioactive ion beams	lon trap spectroscopy
Hot environments (300-3000 K)	Doppler and collision limited, often cryogenic (~4 K)
Low production rates (<1000 ions/s) and short lifetimes	Ion sources start with large sample sizes
>keV beam energy extraction	eV required for injection and traps ideally at ground potential
Produced alongside isotope contamination	Space-charge limited, requires pure samples


Radioactive ion beams	Ion trap spectroscopy	
Hot environments (300-3000 K) Low production rates (<1000 ions/s) and short lifetimes	Doppler and collision limited, often cryogenic (~4 K) lon sources start with large sample sizes	
>keV beam energy extraction Produced alongside isotope contamination	eV required for injection and traps ideally at ground potential	
	Space-charge limited, requires pure samples	
	Uses interrogation time over beam flux \checkmark $\sigma_d \propto rac{1}{t\sqrt{N}}$	1

Adam R. Vernon, 5^{th} September 2021 Slide 5

Radioactive ion beams	Ion trap spectroscopy
Hot environments (300-3000 K) Low production rates (<1000 ions/s) and short lifetimes >keV beam energy extraction Produced alongside isotope contamination	Doppler and collision limited, often ? cryogenic (~4 K)
	Ion sources start with large sample ?
	eV required for injection and traps ? ideally at ground potential
	Space-charge limited, requires pure 🛛 🗸 samples
	Uses interrogation time over beam flux 🗸

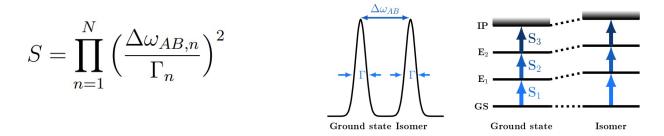
Collinear Resonance Ionization spectroscopy allows highly efficient ionisation and purification on keV beams

Principle of Collinear Laser Spectroscopy

Acceleration to keV beam energies with velocity ν reduces the velocity spread $\delta\nu$ as the energy spread ΔE is conserved [1, 2]:

$$\Delta E = m\nu\delta\nu$$

Allowing narrow linewidth laser spectroscopy without cooling

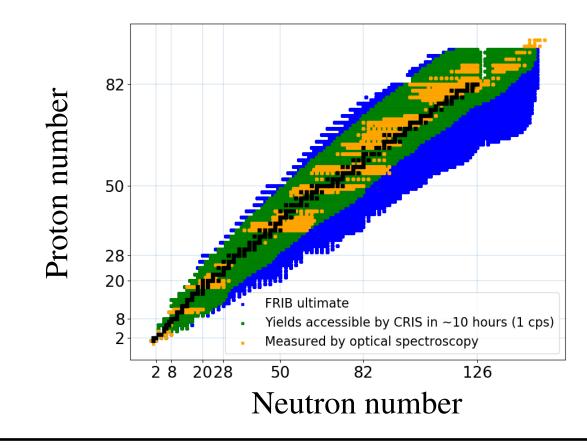


Adam R. Vernon, 5th September 2021 Slide 6

S. L. Kaufman doi: 10.1016/0030-4018(76)90267-4.
 W. H. Wing, doi: 10.1103/PhysRevLett.36.1488.

Collinear Resonance Ionization Spectroscopy

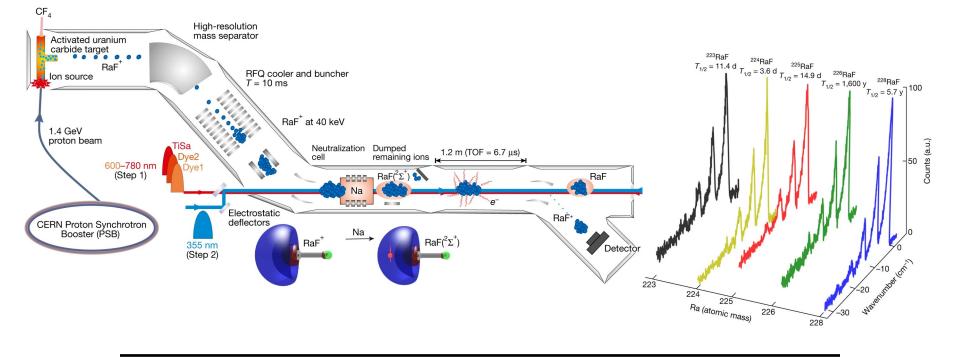
 Selectivity enhanced by linewidth and number of resonant steps to reach IP (~10⁷ per step):


- Implemented at ISOLDE, CERN using bunched ions and pulsed lasers [1] and soon to be used at FRIB, USA
- Allowed hyperfine structure measurements (~20 MHz linewidth) in atomic systems some of the lowest production rate isotopes to date (<20 ions/s) [2]

Adam R. Vernon, 5th September 2021 Slide 7

[1] A. R. Vernon et al., Sci. Rep., doi: 10.1038/s41598-020-68218-5
[2] R. P. de Groote et al., Nature Phys 2020, doi: 10.1038/s41567-020-0868-y

Laser spectroscopy prospects at FRIB



[Thanks to Oleg Tarasov for the FRIB yield data]

Collinear Resonance Ionization Spectroscopy

• Equally well allows vibrational, rotational and hyperfine structure to be resolved in radioactive molecules without cooling e.g. RaF [1, 2]:

Adam R. Vernon, 5th September 2021 Slide 8

[1] R F Garcia Ruiz et al, Nature, 2020, doi: 10.1038/s41586-020-2299-4
[2] S. M. Udrescu et al., PRL 2021, doi: 10.1103/PhysRevLett.127.033001

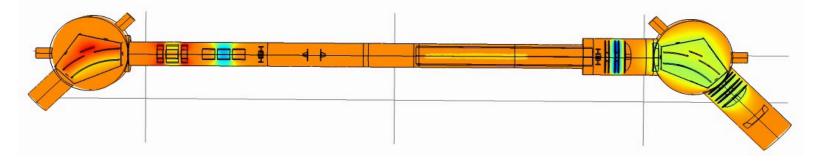
Ion trap spectroscopy
Doppler and collision limited, often cryogenic (~4 K) Ion sources start with large sample ? sizes eV required for injection and traps ideally at ground potential Space-charge limited, requires pure samples Uses interrogation time over beam flux

Collinear Resonance Ionization spectroscopy allows highly efficient ionisation and purification on keV beams

Doppler and collision limited, often ? cryogenic (~4 K)

Ion sources start with large sample ? sizes

eV required for injection and traps ideally at ground potential


Efficient ion catcher and ion guide with differential pumping

In-flight potential switch and deceleration

In-flight potential switch and deceleration

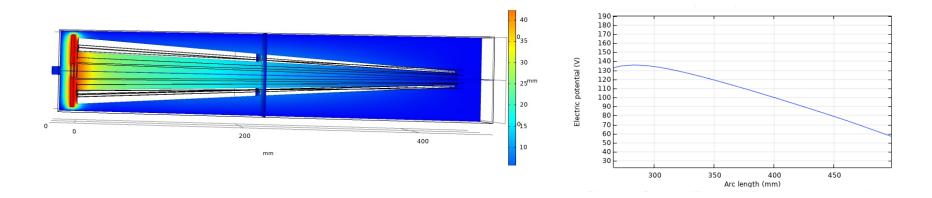
Radioactive ions already bunched into ~2 us for background suppression and efficient overlap with pulsed lasers

2 us at 30 keV becomes ~1 m long for a 20 amu beam

Potential switch provided by resonant ionisation from neutral to ion (or alternatively by a HV switch)

Doppler and collision limited, often ? cryogenic (~4 K)

Ion sources start with large sample ? sizes

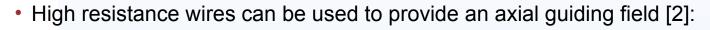

eV required for injection and traps ideally at ground potential

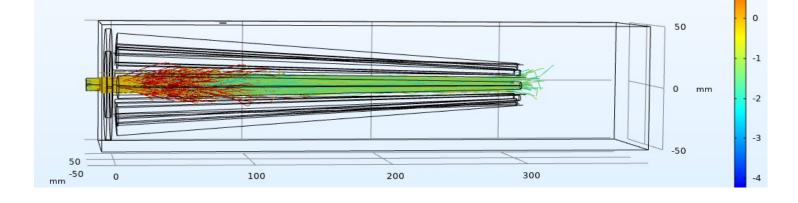
Efficient ion catcher and ion guide with differential pumping

In-flight potential switch and deceleration

Ion catcher and guide

- Need a collisional cell for efficient deceleration and to make injection independent of keV beam energy.
- Conical octupole guides allow for guiding to a small aperture for differential pumping. Often used in mass spec community [1] but rely on gas flow.
- High resistance wires can be used to provide an axial guiding field [2]:




Adam R. Vernon, 5th September 2021 Slide 13

[1] D. Gerlich, The production and study of ultra-cold molecular ions. in: Low temperatures and cold molecules. ISBN-13 978-1-84816-209-9
 [2] Wilcox, B. E. (2002) https://doi.org/10.1016/S1044-0305(02)00622-0

Ion catcher and guide

- Need a collisional cell for efficient deceleration and to make injection independent of keV beam energy.
- Conical octupole guides allow for guiding to a small aperture for differential pumping. Often used in mass spec community [1] but rely on gas flow.

Massachusetts Institute of Technology

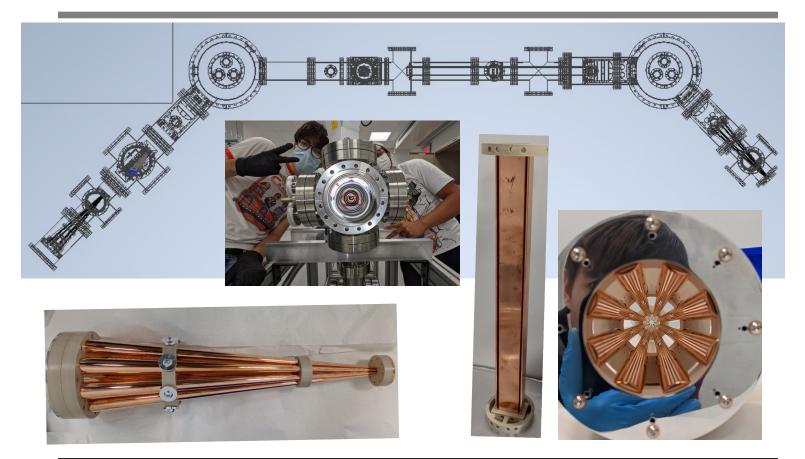
Adam R. Vernon, 5th September 2021 Slide 14

1

[1] D. Gerlich, The production and study of ultra-cold molecular ions. in: Low temperatures and cold molecules. ISBN-13 978-1-84816-209-9
 [2] Wilcox, B. E. (2002) https://doi.org/10.1016/S1044-0305(02)00622-0

Doppler and collision limited, often cryogenic (~4 K) Ion sources start with large sample

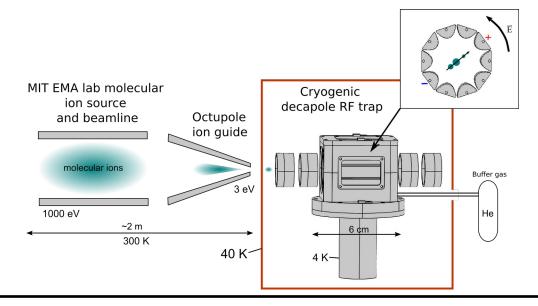
sizes


eV required for injection and traps ideally at ground potential

Efficient ion catcher and ion guide with differential pumping

In-flight potential switch and deceleration

Adam R. Vernon, 5th September 2021 Slide 15


Trapping radioactive atoms and molecules... WIP

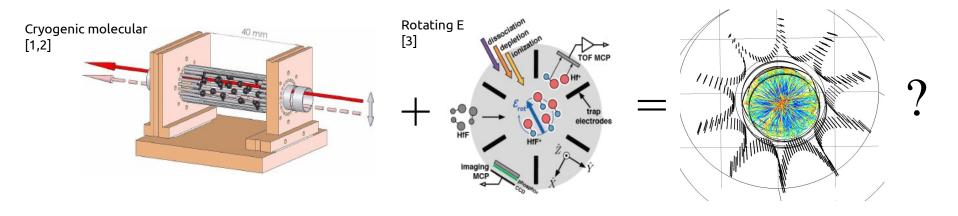
Next steps

- Demonstrate efficient deceleration and trapping with Yb⁺
- Trapping with BaOH⁺, Stark spectroscopy, Ramsey spectroscopy
- Upgrading to cryogenics
- Testing at radioactive ion beam facilities (FRIB, ISOLDE, TRIUMF) for e.g. RaOH+

Acknowledgements

MIT EMA(Exotic Molecules and Atoms) group: I. Belosevic (post-doc), A. Brinson (PhD), R. Garcia-Ruiz (PI), S. Udrescu (PhD), A. Vernon (post-doc), S. Wilkins (post-doc), J. Karthein (post-doc), S. Morosh (PhD), F. Cruz (PhD) + summer students :)

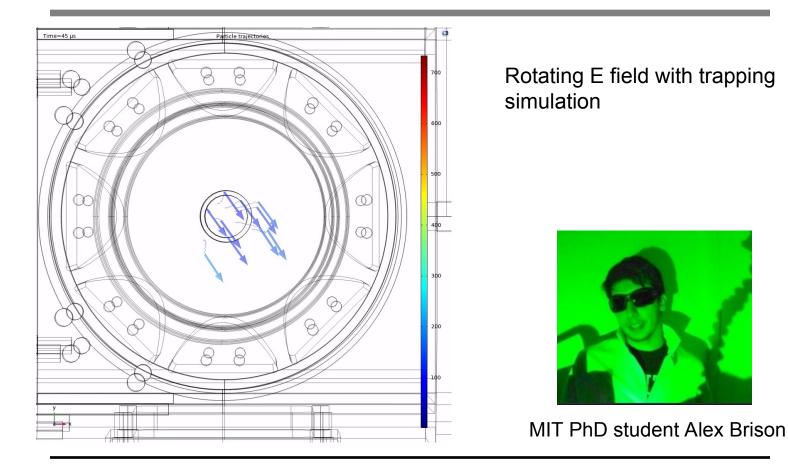
Grants: The U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant DE-SC0021176 and John W. Jarve Seed Fund for Science Innovation grant.


Thanks for listening!

A cryogenic trap for radioactive atoms and molecules

Requirements:

- 1. Compatible with cryogenic cooling to ~4 K to for spectroscopy of atoms and molecules (low RF heating)
- 2. Allow rotating electric field
- 3. Laser access from multiple directions
- 4. Efficient injection and long storage time for use with radioactive samples



Massachusetts Institute of Technology

Adam R. Vernon, 5th September 2021 Slide 17

[1] Asvany (2014). COLTRAP: A 22-pole ion trapping machine for spectroscopy at 4 K. https://doi.org/10.1007/s00340-013-5684-y
 [2] Trippel (2006). Photodetachment of cold OH- in a multipole ion trap https://doi.org/10.1103/PhysRevLett.97.193003
 [3] Cairncross (2017). Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions. https://doi.org/10.1103/PhysRevLett.119.153001

A cryogenic trap for radioactive atoms and molecules

