Probing hadronic interactions with the Pierre Auger Observatory

Francesco Fenu INFN Torino, Università degli studi di Torino Lisbon, 08/09/2021

Photo: Steven Saffi, University of Adelaide

Ultra high energy Cosmic Rays

High energy particles up to E>10²⁰ eV (> 400 TeV c.m.s. energy for protons)

Energy of UHECRs far above the ones achievable by present accelerators

 Possibility to study hadronic interactions at the most extreme energies

Limits of interaction models in UHECR field:

- Uncertainty on primary parameters (energy, direction, mass...)
- Extrapolation from LHC energy
- Extreme forward regions critical
- Hadron-air interactions are critical in CR science

Extensive air showers

Longitudinal development:

Fluorescence and Cherenkov telescopes

Lateral distribution:

Ground arrays of particle detectors

 X_{max} : slant depth of the shower maximum

N.: number of muons on ground

Electromagnetic fraction

 $< X_{max}^{A} > = < X_{max}^{p} > + f_{E} < lnA >$

 $\sigma_A^2(X_{max}) = \langle \sigma_{sh}^2 \rangle + f_a^2 \sigma^2(\ln A)$

Multiplicity

A. Aab et al., NIM A 798 (2015) 172-213

The hybrid detection

Composition from X, max

750

700

650

600

70

60

40

20

10-

17.0

17.5

 $\sigma(X_{max}) [g/cm^2]$

(X^{Delta}) - 750m [4]

(X^{FD}) - ICRC-2019 [10

18.5

1018

Preliminary

18.0

18.5 lq(E/eV)

19.0

19.5

20.0

A. Yushkov, PoS(ICRC2019)482; C. G. Todero Peixoto PoS(ICRC2019)440

Fe

Ν

He

n

Measurement of the p-air cross section

Step 1: identification of a cross section dependent observable (Λ_n)

Tail of distribution dominated by protons

Most important systematic: He contamination (~6% uncertainty for a 25% He fraction)

R. Ulrich, PoS(ICRC2015)401

Step 2: tuning the cross section to reproduce Λ_n .

Energy dependent rescaling of the cross section. (F=1 at accelerator energies)

$$F(E, f_{19}) = 1 + (f_{19} - 1) \frac{\log(E/E_{\text{thr}})}{\log(10^{19} \,\text{eV}/E_{\text{thr}})}$$

Measurement of the p-air cross section

R. Ulrich, PoS(ICRC2015)401; P. Abreu et al., PRL 109, 062002 (2012)

Muon signal on ground

Analysis based on inclined hybrid events (zenith angle > 62°, calorimetric energy and muon distribution on ground are measured)

Fit with a reference muon map from MC ($\rho_{\mu,19}$)

$$\rho_{\mu}(\vec{r}) = N_{19} \rho_{\mu,19}(\vec{r};\theta,\Phi)$$

Normalization factor muon density N₁₉

Total number of muons on ground relative to a 10¹⁹ eV shower $R_\mu \propto N_{19}$

A. Aab et al., PRD 91, 032003 (2015)

Muon density on ground – high energy

Clear deficit in the muon density predictions

From 30-80% deficit at 10¹⁹ eV depending on the model

A. Aab et al., Eur. Phys. J. C (2020) 80:751

Muons from hybrid events

Muon excess or energy scale shift?

Analysis:

- Simulate showers matching the measured event longitudinal profile (with the same θ and E)
- Compare expected LDF with measured one
- Rescale FD energy and hadronic signal to obtain best fit to the LDF

Only a rescaling of the muon fraction needed

30-60% muon deficit in models

No energy rescaling needed

Smallest discrepancy with EPOS-LHC (1.9 σ)

Muon number fluctuations

Muon density fluctuations consistent with expectations

Small effect accumulating over several interactions

- Large muon content
- Fluctuations consistent with the expectations

An overview from different experiments

Possible solutions to the muon deficit problem

R. Ulrich, Phys. Rev. D83, 054026 (2011); S. Baur et al., arXiv.1902.09265

Future prospects

Most of muons produced by hadrons emitted in the forward direction

Models do not agree in forward regions and for p-O interactions

Tests to solve the muon puzzle:

At the accelerators:

- Test interactions at the LHC in the forward regions
- p-O and O-O collisions (approved for LHC run 3 – 2023/2024)

At Auger: upgrade of the observatory → Auger Prime

J. Albrecht et al., arXiv:2105.06148; T. Pierog, ISVHECRI 2018

Conclusions

Auger data offer complementary information on hadronic interactions

- → Cross sections p-air above the LHC range (34–77 TeV)
- Muon content in showers measured
- → Information on first interaction from muon fluctuation measurement
- → Beyond standard model searches LIV, monopoles, top-down models...

Origin of muon discrepancy

- → Possibly an issue in forward soft-QCD reducing the π^0 energy ratio
- → Lack of nucleon-air measurements
- Small modification in the hadronic models cumulated over several interactions
 (allows for: muon excess + consistent muon fluctuations + consistent X_{max} moments)

Future steps:

- → Measurements at high η and p-O collisions at LHC
- Auger Prime to improve the sensitivity to the muonic component