Description Descri

R. Nakamoto¹, M. Ito¹, A. Saito², and S. Shimoura³

¹Department of Pure and Applied Physics, Kansai University, Japan ²Department of Radiation Oncology, Hiroshima University Hospital, Japan ³Center for Nuclear study, School of Science, University of Tokyo, Japan

Introduction & Motivation

Non-resonant background strength in binary BU

The main origin of the non-resonant background is expected to be the one-step direct breakup We define the direct breakup as an one-step transition from ground state (g.s.) \rightarrow binary continua

Expansion with various binary channels

Direct breakup

→ Transition from channel γ in the g.s. to the distorted wave in γ $S_L \propto \left| \left\langle \tilde{\chi}_{\gamma}^{(f)} \middle| V_L \middle| \chi_{\gamma}^{(i)} \right\rangle \right|^2$

Distorted wave of channel γ

Component of channel γ in the initial state

Extension of Migdal-Watson formula

Our aim

We extend the Migdal-Watson (MW) formula so as to describe non-resonant background strength by direct breakup

Valid for binary breakup of

- $\begin{cases} \cdot \text{ s-wave } \rightarrow \text{finite spin} \\ \cdot \text{ charge-less } \rightarrow \text{finite charge} \\ \cdot \text{ short range initial w.f. } \rightarrow \text{finite size} \end{cases}$
- Finite *L* & charge $\sqrt{E} \rightarrow P_L(ka)$ *P_L*: penetration factor (finite spin and charge in final states)

K. Watson, PRC88, 1163 (1952)

A. Migdal, Sov. Phys. JETP 1, 2 (1955)

S. Shimoura, EPJ Plus 133, 463 (2018)

• Effect of finite size
$$\rightarrow e^{-\beta E}$$

(finite size of initial w.f.)

We simulate the non-resonant background strength by the extended MW formula

Evaluation of non-resonant background strength

We use the complex scaling method to simulate the strength of the non-resonant background

Result (1) : Fitting of ²⁰Ne \rightarrow ¹⁶O+ α (*L*=0, 2)

Extended MW formula nicely reproduces the results by CSM

Result (2) : Initial wave packet and strength function

1. Strength function is more extended as the initial wave packet is deeply bound

 \Rightarrow Strength func. corresponds to Fourier transformation by the final distorted wave

2. Spatial size of the initial wave packet is sensitive to the parameter β

 $\Rightarrow \beta \approx 0$ corresponds to the strongly localized wave packet inside of nuclear interaction

Summary & Result

We have proposed a new formula to describe the non-resonant background strength by extending the Migdal-Watson (MW) formula, and it is checked by comparing with the CSM calculation

 \Rightarrow The new formula nicely reproduces the background strength induced by direct BU

Relation of the initial wave packet and the strength function is investigated

⇒ Energy dependence of direct BU is sensitive to the spatial size of initial wave packet

Conclusion & Future work

Extended MW formula

$$S_L(E) = \frac{P_L(ka)e^{-\beta E}}{AE^2 + BE + C}$$

In conclusion, the new formula is intuitively easy to understand, and it is expected to be useful to evaluate the background strength in the general binary breakup reaction

 \Rightarrow The application of new formula to the various binary breakup is strongly desired !

(We are now analyzing of the data of ${}^{15}C \rightarrow \alpha + {}^{11}Be$)

In future work, the similar analysis should be done for the three-body systems

 \Rightarrow Core + n + n system is especially important to consider