

Experimental investigations of proton–capture reactions with 112,114 Cd at energies of astrophysical interest

<u>P. Vasileiou</u>, T. J. Mertzimekis, A. Chalil, C. Fakiola, I. Karakasis, A. Kotsovolou, S. Pelonis and A. Zyriliou

National & Kapodistrian University of Athens

22nd Particles and Nuclei International Conference, Lisbon, Portugal, 5–10 Sep 2021

Introduction – Motivation

- ▶ The *p* process reaction network involves roughly 20000 reactions among 2000 nuclei. Most of these reactions need to be estimated by means of the Hauser–Feshbach statistical model
- The study of the experimental cross sections of radiative capture reactions is important for:
 - 1. Constricting the theoretical model parameters, improving theoretical predictions for currently unmeasured reactions
 - 2. Calculating photodisintegration decay constants, providing us with insight on the reaction flow in the examined mass regime

▲ロト ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の ○ ○

Introduction – Motivation

- ▶ The ¹¹³In is nowadays accepted not to be a "pure" p nucleus, having non-negligible s and r process contributions
- ▶ ¹¹⁴Cd involved in the *s* process, no total proton–capture cross section experimental data available for low energies ($\sim 3 \text{ MeV}$) for this nucleus
- Experimental cross sections, for energies of astrophysical importance (i.e. inside the Gamow window for these reactions, $\sim 1.6 4.8$ MeV for both reactions, corresponding to $T_9 \sim 1.7 3.3$ GK) provide valuable input for the determination of the reaction flow in this mass region

▲ロト ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の ○ ○

Experimental Setup

(a)

(b)

Figure: Schematic representation of the T11 5.5 MV Tandem Accelerator of NCSR "Demokritos" (a), and the detector array (3HPGe detectors, at 55° , 90° and 165°) w/ respect to the beam (b). Isotopic (99.7%) ¹¹²Cd and ¹¹⁴Cd were used in the experiments.

4/18

Evaluation of the Cross Section – The In-beam and Activation Methods

- ▶ In-beam (σ_{gs}): Measurement of prompt γ -ray transitions feeding the ground state in the in-beam spectra, summing to σ_{gs}
- Activation (σ_{is}) : Measurement of the decays of the residual nuclei after the end of the target irradiation. This method is employed to account for the contributions of the isomeric transitions to the reaction cross section.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

5/18

Total Cross Sections – Astrophysical ${\cal S}$ factors

► Total cross section:

$$\sigma_T = \sigma_{gs} + \sigma_{is} \tag{1}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

 \blacktriangleright Astrophysical *S* factor:

$$S(E) = E\sigma(E)e^{2\pi\eta}$$
, with $\eta = \frac{Z_a Z_X e^2}{\hbar v}$ (Sommerfeld Parameter)
(2)

National & Kapodistrian University of Athens

In-beam Spectra – The Reaction ¹¹²Cd+p

 6/18

National & Kapodistrian University of Athens

In-beam Spectra – The Reaction ¹¹⁴Cd+p

National & Kapodistrian University of Athens

Experimental investigations of proton-capture reactions with 112,114 Cd at energies of astrophysical interest

3

Theoretical Calculations

8/18

- ▶ The results are compared with the existing experimental data and the theoretical predictions of the latest TALYS (v1.95) code
- 96 different combinations (=2 OMPs×6 NLDs×8 γSF, default options) were used for the theoretical calculations. For each energy, the maximum and minimum was determined (colored area in the graphs)

OMP	NLD	$\gamma \mathbf{SF}$
1. Koning–Delaroche	1 CTM	1. Kopecky–Uhl
2. Bauge–Delaroche–Girod	2. BSF	2. Brink–Axel
	3. GSM	3. HFBCS
	4. Goriely Tables	4. HFB
	5. Hilaire Tables	5. Goriely Hybrid
	6. TDHFB, Gogny force	6. Goriely TDHFB
		7. TDRMF
		8. Gogny D1M HFB
		+QRPA

Table: Models used for the calculations of the cross sections with TALYS.

▲ロト ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の Q @

9/18

Figure: Cross Sections for the reactions ${}^{112}Cd(p,\gamma){}^{113}In_{gs}$ (a) and ${}^{112}Cd(p,\gamma){}^{113}In_{is}$ (b)¹.

¹https://doi.org/10.1016/j.nuclphysa.2021.122298

National & Kapodistrian University of Athens

Experimental investigations of proton-capture reactions with ^{112,114}Cd at energies of astrophysical interest

ъ

Figure: Total cross sections (a) and astrophysical S factors (b) for the reaction $^{112}Cd(p,\gamma)^{113}In^1$.

1
https://doi.org/10.1016/j.nuclphysa.2021.122298
<□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □

11/18

Figure: Cross Sections for the reactions ${}^{114}Cd(p,\gamma){}^{115}In_{gs}$ (a) and ${}^{114}Cd(p,\gamma){}^{115}In_{is}$ (b)¹.

¹https://doi.org/10.1016/j.nuclphysa.2021.122298

National & Kapodistrian University of Athens

Experimental investigations of proton-capture reactions with ^{112,114}Cd at energies of astrophysical interest

イロト イロト イヨト イヨト 三日

Figure: Total cross sections (a) and astrophysical S factors (b) for the reaction $^{114}{\rm Cd}(p,\gamma)^{115}{\rm In}^1.$

1
https://doi.org/10.1016/j.nuclphysa.2021.122298
<□ → < ∂ → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê → < ê

Conclusions

For the reactions ${}^{112}Cd(p,\gamma){}^{113}In_{gs,is,tot}$:

- ► Good agreement with the theoretical predictions of TALYS, despite some overestimation of the theoretical isomeric cross section for the 3.4 MeV energy point
- Excellent agreement with the data from the earlier work of Psaltis *et al.* for the 3.4 MeV energy point.
- ▶ Results extended to energies above the neutron emission threshold for the reaction ($E_{th} = 3.397$ MeV), while inside the Gamow window, for the first time

For the reactions ${}^{114}Cd(p,\gamma){}^{115}In_{gs,is,tot}$:

- Cross sections for the g.s. transition measured for the first time, using in–beam γ–spectroscopy
- ▶ Results are in agreement with the theoretical predictions of TALYS
- Better agreement with the experimental data of Tarkányi *et al.*, despite their higher energy uncertainties, on which the current results improve significantly

Conclusions

- ▶ An attempt was carried out to determine the TALYS model parameter combination achieving the best *simultaneous* description of all of the studied reaction channels
- ► The proposed parameter combination (labeled TALYS Mod in graphs) leads to a significantly improved description of the experimental data, especially for the isomeric cross sections

Certainly, further investigation is required in this region of the nuclear chart, both experimentally and theoretically, so as to:

- Improve knowledge on the reaction networks
- Provide firm insight on the driving mechanisms behind p process nucleosynthesis
- Constrict the theoretical model parameters, in an energy region where a scarcity of experimental data, even for stable nuclei, still persists

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Acknowledgements

We are grateful to M. Andrianis, A. Laoutaris, and S. Nanos for providing beams during the experiments, and Dr. E. Ntemou for technical assistance with the target measurement. AZ and AC acknowledge support by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT) under the HFRI PhD Fellowship grant (GA. No. 101742/2019 and 74117/2017, respectively).

End of Presentation

Thank You

The Gamow Window

15/18

Figure: Schematic representation of the Gamow window, ΔE_0 , corresponding to nuclear burning reactions, for the case of charged particle–induced reactions.

National & Kapodistrian University of Athens Experimental investigations of proton-capture reactions with ^{112,114}Cd at energies of astrophysical interest

(日) (四) (日) (日) (日) (日)

Evaluation of the Cross Section – The In-beam Method

- Measurement of transitions feeding the ground state in the in-beam spectra
- The cross section is found by summing all of the partial cross sections, σ_i, feeding the g.s.:

$$\sigma_{gs} = \sum_{i=0}^{N} \sigma_i = \frac{A}{N_p N_A \delta} \sum_{i=0}^{N} (A_0)_i \tag{3}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where $(A_0)_i$ is the total number of photons of energy E_i^{γ} emitted in the reaction

17/18

Evaluation of the Cross Section – The Activation Method (1/2)

- This method is employed in order to account for the contributions of the isomeric transitions to the reaction cross section
- ▶ The number of produced radioactive nuclei alive at the end of the irradiation of the target with a beam of constant current, ϕ_b [particles s⁻¹], is:

$$\mathcal{N}_{prod} = \sigma N_X \phi_b \frac{1 - e^{-\lambda t_{irrad}}}{\lambda} \tag{4}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where $N_X = \delta N_A / A$ is the surface number density of target nuclei X, $\lambda = \ln 2 / T_{1/2}$ the decay constant

National & Kapodistrian University of Athens

Evaluation of the Cross Section – The Activation Method (2/2)

▶ The number of decays after a given counting time, t_c , is:

$$\mathcal{N}_{decay} = \mathcal{N}_{prod} e^{-\lambda t_w} (1 - e^{-\lambda t_c}) \tag{5}$$

where t_w the waiting time elapsed between end of irradiation and beginning of counting

The isomeric cross section is evaluated with the use of Eqs. (4), (5) as:

$$\sigma_{is} = \frac{\mathcal{N}_{decay} \lambda e^{\lambda t_w}}{N_X \phi_p I_\gamma (1 - e^{-\lambda t_{irrad}}) (1 - e^{-\lambda t_c})} \tag{6}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where I_{γ} is the probability for γ -ray emission ($I_{\gamma} \approx 0.649, 0.458$ for the isomeric states of ^{113,115}In, respectively)

National & Kapodistrian University of Athens