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Probing new physics at the LUXE experiment
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Outline

1. Introduction to LUXE.


2. The LUXE Physics and Experimental 
Setup.


3. New Physics at the Optical Dump 
(NPOD).


4. Summary
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LUXE NPOD paper: 2107.13554

LUXE NPOD paper

LUXE CDR: 2102.02032

LUXE CDR

More talks on LUXE: by Yan Benhammou and Shan Huang.

https://arxiv.org/pdf/2107.13554.pdf
https://arxiv.org/pdf/2107.13554.pdf
https://arxiv.org/pdf/2102.02032.pdf
https://arxiv.org/pdf/2102.02032.pdf
https://indico.lip.pt/event/592/contributions/3153/
https://indico.lip.pt/event/592/contributions/3189/
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LUXE: tests of strong-field QED
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✦ Schwinger critical field: .

✦Not achievable in terrestrial laboratories. 

✦May use lasers — in certain rest frames the field of lasers can be enhanced by the system’s boost.  

ϵS = m2
e c3/eℏ ≃ 1.32 ⋅ 1018 V/m

First discussions by Sauter, Heisenberg & Euler

First calculations by Schwinger: ϵS

E144 at SLAC first to approach  (reached )ϵS ϵ → ϵS /4

LUXE: reach  and beyondϵS

1930s

1951

1990s

2020s

✦ Goal of LUXE experiment: 
✦ Effort to reach  and beyond 

✦ Test basic predictions of novel Quantum Mechanics

✦ Search for BSM Physics enhanced by the strong field

ϵs

ϵ
V

Electric field ϵ

⟶ ∞

The probability to materialize one virtual  pair from the vacuum: 
,  numeric constant, non-perturbative when 

e+e−

P ∼ exp(−a
ϵs

ϵ
) a ϵ → ϵs
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Hartin et.al. Phys. Rev. D 99, 036008 (2019)

A Brief Idea about the LUXE physics
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Laser Und XFEL Experiment

High energy 
electrons

(XFEL)

High-power 
(40/350 TW) laser 

generates

large E-field

More details about LUXE: The 
Conceptual Design Report

LUXE

ϵ → ϵ ×
Eγ

me
∼ ϵ ×

10 GeV
0.5 MeV

∼ ϵ × 104

The rate of laser assisted one photon pair production 
asymptotically 

 resembles to that of the spontaneous pair production in vacuum.  

Ee up to 17.5 
GeV,  

Ne = 1.5-6×109 
e-/bunch

“see” a larger 
field by 


in its rest frame
Eγ /me

Laser intensity parameter: .

Quantum parameter: , describes the interaction.


Non-perturbative when 

ξ ∝ ϵ/ϵs
χe,γ ∝ (Ee,γ /me)ξ

ξ > 1Compton process followed by 
Breit-Wheeler process

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.036008
https://arxiv.org/pdf/2102.02032.pdf
https://arxiv.org/pdf/2102.02032.pdf
https://arxiv.org/pdf/2102.02032.pdf
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LUXE at the EU.XFEL
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LUXE

XFEL: Running since 
2017

Position of LUXE

★LUXE will start running from 2024.

★Run up to 2029 in two phases.

★First physics result around 
2025/2026.


★Critical Decision 0 from DESY 
received. 

LUXE 
experimental 

hall

Electrons
Ee up to 16.5 GeV, with Ne = 1.5×109 e-/bunch and a bunch charge up to 1.0 nC,

1/2700 bunches/train, ~1+9 Hz (collisions+background), spot rxy=5 µm, lz=24 µm

Laser
Ti-Sapphire, 800 nm, 40/350 TW,  up to ~10 J, ~10 Hz repetition, 60% losses


 
~30-200 fs pulse length, down to 3×3 µm2 FWHM spot with up to I~1021 W/cm2


Today’s talk 
focus

ALPs
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New Physics @ LUXE
Focus on axion-like-particles (ALP)
• Well motivated BSM scenario


• The axions propose as a solution to strong 
CP problem.


• If very light, it is a dark matter candidate.


• Light ALPs arise in variety of models 
motivated by Goldstone theorem. 


• Focussing on the Primakoff production


• Displaced decay of ALPs to 2 hard photons


• Everything applies to scalar with:


• , , a → ϕ F̃μν → Fμν iγ5 → 1
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LUXE


EPJC Vol 79, 74 (2019)

https://link.springer.com/article/10.1140/epjc/s10052-019-6587-9
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a, ϕ
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γL

γ γ
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EMCalMagnetPhotons

Dump

e-laser int. 

chamber LD = 1 m LV = 2.5 m

Concept of Optical Dump
• High flux of GeV photons emitted from the LUXE’s electron-laser interaction region. 


• Na ≈ ℒeff ∫ dEγ
dNγ

dEγ
σa(Eγ, Z)(e− LD

La − e− LV + LD
La ) 𝒜
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Laser pulse 
“Optical Dump”

Free GeV 
photons

Beam 
electron

“Optical Dump”

e−

γL

γ
3γ

Background

Production

γ

n

e, μ, π, K, p, . . .

K0
L

Pulse waist size

Pu
ls

e 
du

ra
tio

n  p
er

 B
X

N
γ(E

>
1

G
eV

)/
10

9

Time scales: ω−1
L ≪ τγ ≲ tL ≪ τee

✴  fs: good to use laser as a background field to a leading order.

✴  fs: treat the  

photons in the laser as free streaming.

✴  fs and   fs.


✴laser behaves as a thick target for electrons.

1/ωL ∼ 0.4
τee ∼ 𝒪(104 − 106)

τγ ∼ 𝒪(10) tL ∼ 𝒪(20 − 120)
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Photon spectra for ALPs production
• Spectra of photons per initial electrons


• Primary photons from the interaction point


• Secondary photons from the shower in the 
dump


• For phase I, there are many photons per initial 
electron


• 3.5 photons for  > 0 GeV


• 1.7 photons for  > 1 GeV


• More photons if the electron beam is sent directly 
to the dump


• More signal, but at the cost of much more 
background. 

∼ Eγ

∼ Eγ

8

phase-1: all

phase-1: primary

phase-1: secondary

phase-0: all

phase-0: primary

phase-0: secondary

Bremsstrahlung

1 2 3 4 5 6 7 8 9 10 11 1210-4

10-3

10-2

10-1

1

Eγ [GeV]

dN
γ

dE
γ
[p
er
e-
/G
eV

]

phase0:

- 

- 

- 

-

τpulse = 25 fs
w0 = 6.5 μm
ξ = 2.4
Nγ/e < 1

phase1:

- 

- 

- 

-  or 1.7 if 

τpulse = 120 fs
w0 = 10 μm
ξ = 3.4
Nγ/e = 3.5 Eγ > 1 GeV
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Background Estimation:
• SM particles produced in the dump during the shower


• Charged particles: electrons, muons and hadrons.


• Can be bent away from the detector surface by a magnetic field.


• Fake photons: mostly neutrons.


• Real photons: EM/hadronic interactions from the close to the end of the dump 
or from meson decay. 

9
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LUXE-NPOD
Fit & 95% CI

Electrons on dump

Fit & 95% CI

each point has 2 BXs simulated
Rγ/n(LD < 1 m)

✴Background estimated from the Geant4 simulation

✴Got 0 photons and 10 neutrons (with  GeV) in the 
2 BX simulated for the 1 m long dump.


✴Photons can be statistically limited here. 

✴Unfortunately simulation is computationally expensive. 

E > 0.5

★ Way out: photon production is correlated with neutron production in 
hadronic processes 

★ The number of photons can be estimated from the photons to neutron ratio at the 
shorter dump  where there are more number of photons.

★  Nγ ∼ Nn(LD = 1m) × Rγ/n(LD < 1m)

Photon production is 
correlated with neutron
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Use of timing information
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*BACKGROUND*

30 cm long dump

E > 0.5 GeV

Neutrons/protons

fly slower…

Take  dump

here just to have stats.

(nominally: )

LD = 30 cm

LD = 1 m

★Signal and background particles take different time to travel the distance between the 
dump and the detector face. 

★Signal ALPs are faster than background neutrons/protons. 


★Trigger at  (Eu.XFEL clock) and then open a short time window .

★Most signal and background photons will arrive within  ns

★Almost all hadrons will arrive after that. 


★Background rejection  from kinematics and timing. 

★Neutron to photon fake rate 

★Considering one year of data taking ( ), the number of total background is < 1.

t0 Δt
Δt ∼ 0.5

≲ 10−3 − 10−4

≲ 10−3 − 10−4

107s
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LUXE CDR

 > 0.5 GeVγE

 a+N→+Nγ
γγ→a

dump length: 0.3 m
end of dump at 1.15m

detector at 3.65 m

-1 GeV-4: 10Λ: 130 MeV, 1/am
-1 GeV-5: 10Λ: 200 MeV, 1/am

-1 GeV-610×: 4Λ: 416 MeV, 1/am

*SIGNAL*

(MadGraph)


30 cm long dump
E > 0.5 GeV

t1
t0 Δt

Background 
rejection ~[%]

Signal efficiency [%]

for ma:1/Λa

Δt [ns] γ n p KL 130:1e-4 200:e-5 416:e-5

0.1 57 99.9 99.9 87 99.6 84 46
0.5 16 96 94 52 100 100 99
1.0 0 80 70 13 100 100 100

Rneutrons
sel ∼ 10−3
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Summary
• LUXE is a new experiment with baseline plan of testing 

strong field QED. 


• Regions never been explored in a clean environment. 


• Plan to start taking data by 2024/2025.


• Search for new physics


• Using optical dump feature of this experiment


• Proposal is easily added to the experiment with 
essential background free search.


• The reach of LUXE is comparable with NA62 (with 
dedicated run) and FASER (end of HL-LHC).


• LUXE reach in the mass 40 MeV to 350 MeV above 
 .1/Λ > 10−6 GeV−1

11
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Setting the number of observed signal-like events to , 
the 95 % CL equivalent for background free search

Na = 3
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Tomsk, Russia

Shenzhen, China

More than 90 scientists, 29 institutes, 9 countries 



Thank you!

13



Back up

14
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LUXE Planning

๏ CDR released in Feb 2021 & passed an international review. Now working toward TDR for 2022

๏ Experiment must be installed by 2024 during the long shutdown of the Eu.XFEL

๏ Phase-0: data taking in 2024 with the 40 TW laser in e-laser mode and move to γ-laser in 2025

๏ Phase-1: upgrade laser to 350 TW in 2026 and run until the Eu.XFEL needs the tunnel (~2029)
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Experimental setup

16

Dipole magnet 1
Laser pulse

Compton γ’s

e−e+

γ dump
e-laser setup 
(Not in scale)

Electron beam dump

Electron beam 
from the XFEL

IP

θ = 17
0

γ-converter

Dipole magnet 2 

Shielding

Cherenkov counter 
behind a Scint. screen

Scint. screen

Backscattering calorimeter

e−e+

Shielding

x

y
z

γ
γ

ALPs

γALPs detector (TBD)

γ-profiler

e−
C

Pixel tracker

Calorimeter

Focus of 
today’s talk
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MadGraph settings
• Generate this process: a nuc -> ax nuc where a is photon, nuc is the nucleus of the tungsten dump and ax 

is the ALP (a BSM pseudoscalar particle). 


• Primakoff production mechanism.


• The dump is stationary. 


• The nuclear form factor was obtained from Iftah Galon and implemented  
in the model.


• The MadGraph generated output in the standard LHE file format.


• Converted to root using ExRootConverter


• The root file contained these branches:


• Particle four momentum, PDG, Status (incoming/outgoing) etc. 


• MadGraph does not smear the vertex position, so all collisions happen at z=0, t=0. 


• Moreover MadGraph decays ALP instantaneously - so we have two photons in the final state.


• The 2 photons are produced at z=0 and hence we need to displace them according to the ALP’s lifetime 

19



Acceptance Calculation

• The distance of decay ( ) for each ALP is obtained by randomly drawing a length from the decay length 
distribution of the ALP.


• Decay length is obtained using . 


•  randomly drawing a number from exp(- ).


• The direction is determined by the momentum of ALP. 


• Once the  is determined, photons are shifted to that position.


• If  is more than the dump length ( ) and less than ( ), then we 
proceed to next stage, other wise the event is rejected. 


• Given the opening angle of the photons and the distance still need to travel to detector, one checks if the 
photons are caught by the detector or not.  


• If both the photons are caught by the detector (and E > 0.5 GeV), then that event is accepted. 


• If at least one photon has energy less than 0.5 GeV or/and at least one photon is outside geometric 
acceptance, the event is rejected.  


• Acceptance events with both photons passing the energy cut and geometric constraints/total number 
of events generated.

rvtx

LA = cτApA/mALP

rvtx : LA

⃗rvtx

| ⃗rvtx |cos(θALP) LS = 1.0m LS + LD = 3.5m

𝒜 =

20

⃗rvtx

Detector

Event1:Photon1

Event1:Photon2

Event 1: Rejected

Event2:Photon1

Event2:Photon2

Event2:Accepted

⃗rvtx

θALP, ϕALP

outgoing

photon 2

incoming photon
outgoing

photon 1

LD = 2.5m

LS = 1.0m

Dump Detector
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ALPs production
Na ≈ ℒeff ∫ dEγ

dNγ

dEγ
σa(Eγ, Z)(e− LD

La − e− LV + LD
La ) 𝒜

La = cτa
pa

ma

pa ≈ E2
γ − m2

a
ℒeff = NeNBX

9ρW X0

7AWm0

๏  is the number of electron per bunch and  is the number of BXs assumed

๏  is the incoming photon energy

๏  is the effective luminosity, where  is the Tungsten density,  is its mass number and  is its 

radiation length.  is the nucleon mass

๏  is the ALP propagation length, where  is its proper lifetime and  is its momentum

๏  is the Primakoff production cross section of the ALP in the dump

๏  is the angular acceptance times efficiency of the detector

๏  is the differential photon flux per initial electron, includes photons from the electron-laser interaction, 

as well as secondary photons produced in the EM shower which develops in the dump

๏  is the dump’s length. The dump is positioned ∼13 m away from the electron-laser interaction region

๏  is the length of the decay volume

๏ The decay rate of the ALP into two photons is 

Ne = 1.5 × 109 NBX( = 107)
Eγ
ℒeff ρW AW X0

m0 ∼ 930 MeV
La τa pa
σa(Eγ, Z)
𝒜
dNγ /dEγ

LD = 1 m
LV = 2.5 m

Γa→γγ = m3
a /(64πΛ2

a)



LUXE ALP reach:

• The line is drawn where 
LUXE expects at least 3 
ALP events. 


• Result coming from 
phase 1 incoming 
photon distribution.


• Yotam Soreq obtained 
the result analytically, I 
got the same result 
using simulation. 

22

Analytical

MadGraph
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Particles from e/γ-beam on 1m W dump

LUXE

γ-on-dump

XFEL

e-on-dump

Each simulation in the following is equivalent to about 2 BXs (i.e. 3e9 primary e’s)

Showing the number of particles - only those which arrive at the detector surface

neutrons

photons

neutrons

photons
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Probability to get 2 real photons
๏ 


๏  since the fit gives  and 

since , with  

(or in the e-on-dump case:  for  
 and )


๏   (or in the e-on-dump case: )

Pmγ
=

λmγ
γ e−λγ

mγ!

λγ = 0.013 ± 0.004 Rγ/n = 0.0013 ± 0.0002

Nn ≃ 10 λγ = NnRγ/n 1 ± 1
Nn

+
Δ2Rγ/n

Rγ/n

λγ ≃ 0.26 ± 0.04
Rγ/n ≃ 0.0062 ± 0.0002 Nn ≃ 42.6

P2γ =
λ2

γ e−λγ

2!
≃ 8.34 × 10−5 2.7 × 10−2
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Probability to get 2 fake photons
๏ 


๏   (or in the e-on-dump case: )


๏



๏



๏



๏    (or in the e-on-dump case:  )

Pn→γ = fn→γ

λn = λn(1 m) = 10 λn ≃ 42.6

P2n→2γ =
∞

∑
mn=2

λmnn e−λn

mn!
C(2,mn, Pn→γ)

P2n→2γ =
∞

∑
mn=2 ( λmnn e−λn

mn! ) ( mn!
2!(mn − 2)!

P2
n→γ × (1 − Pn→γ)mn−2) =

∞

∑
mn=2

λmnn e−λn × P2
n→γ × (1 − Pn→γ)mn−2

2!(mn − 2)!

P2n→2γ =
P2

n→γe−λnλ2
n

2 (1 + λn(1 − Pn→γ) +
λ2

n(1 − Pn→γ)2

2!
+ . . . ) =

P2
n→γe−λnλ2

n

2 (
∞

∑
k=0

(λn(1 − Pn→γ))k

k! ) =
P2

n→γe−λnλ2
n

2

∞

∑
k=0

xk

k!

ex

P2n→2γ =
P2

n→γλ2
ne−λneλn(1−Pn→γ)

2
= P2

n→γe−λnPn→γ
λ2

n

2
= 50f2

n→γe−10fn→γ
42.62

2
f2
n→γe−42.6fn→γ
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Probability to get 1 real + 1 fake photons
๏ For photons: ,   

๏
For neutrons: ,   ,    

 

 

  

 



๏ For one neutron and one photon:  

(or in the e-on-dump case: )

λγ = 0.013 ± 0.004 Pmγ
=

λmγ
γ e−λγ

mγ!
⇒ P1γ = λγe−λγ

Pn→γ = fn→γ λn = 10 ± 2.3 P1n→1γ =
∞

∑
mn=1

λmnn e−λn

mn!
C(1,mn, Pn→γ)

P1n→1γ =
∞

∑
mn=1 ( λmnn e−λn

mn! ) ( mn!
1!(mn − 1)!

Pn→γ × (1 − Pn→γ)mn−1) =
∞

∑
mn=1

λmnn e−λn × Pn→γ × (1 − Pn→γ)mn−1

(mn − 1)!

P1n→1γ = Pn→γe−λnλn (1 + λn(1 − Pn→γ) +
λ2

n(1 − Pn→γ)2

2!
+ . . . ) = Pn→γe−λnλn (

∞

∑
k=0

(λn(1 − Pn→γ))k

k! ) = Pn→γe−λnλn

∞

∑
k=0

xk

k!

ex

P1n→1γ = Pn→γλne−λneλn(1−Pn→γ) = Pn→γe−λnPn→γλn

Pn+γ→2γ = P1n→1γ ⋅ P1γ = (λn fn→γe−λn fn→γ) ⋅ (λγe−λγ) ≃ 0.128fn→γe−10fn→γ

1.12fn→γe−42.6fn→γ
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๏ Assuming

๏ one year of running with  live seconds, i.e. recorded BXs

๏ rejection is  from kinematics & timing

๏ neutron-to-photon fake rate is  


๏ Number of bkg two-photon events is 

๏ 

๏  (sub-dominant)

๏ 


๏ The probabilities are given by Poisson and Binomial laws: 

T ∼ 107

Rsel ≲ 10−3 − 10−4

fn→γ ≲ 10−3 − 10−4

Nbkg = PbkgRselToperation
bkg = 2γ
bkg = 2n → 2γ
bkg = γ + n → 2γ

Max 
Nbkg

LUXE 
NPOD

Electrons 
on dump

N2γ 0.4 133.9

N2n⟶2γ 0.1 1.1

Nγ+n⟶2γ 0.3 21.1

Assumptions Value

Top 1E+07

Rsel 5E-04

fn⟶γ 5E-04

Parameter LUXE

NPOD

Electrons  
on dump

Rγ/n (fit) 0.0013 0.0062

μn (count) 9.8 42.6

μγ (extrap.) 0.013 0.264

Background estimation

PNγ
=

μNγ
γ e−μγ

Nγ!
PNn→Nγ

=
∞

∑
kn=Nn

μknn e−μn

kn!
B(Nn, kn, fn→γ) Pn+γ→2γ = P1n→1γ ⋅ P2γ

Ntot
bkg < 1
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Synchronisation & Trigger

Synchronisation of the XFEL:

๏ Optical clock (master laser oscillator, MLO) provides stable pulsed optical 

reference (Phase-locked to radio frequency (RF) oscillator (MO))

๏ Optical reference distributed via length-stabilised optical fibre links for 

laser locking and RF re-sync

LUXE’s laser oscillator:

๏ connected to the optical sync system, which will in turn trigger the detectors

2.1 fs rms

Correlation of two independent

bunch arrival time diagnostics


(BAMs) at tunnel location 1932 m

world’s largest femtosecond-precision 
synchronisation system 


