Improvement of systematic uncertainties for the neutron lifetime experiment at J-PARC Takanori Mogi (The University of Tokyo) On behalf of the J-PARC neutron lifetime collaboration

 $(n \rightarrow p + e^- + \overline{v_e})$ in $\tau_n = 879.4 \pm 0.6 \text{ s}$ (PDG2020)

- and V_{ud} term of CKM matrix.
- of two typical methods.

$$\mathbf{D} \pm \mathbf{2.0 s}$$

 $-\frac{dN}{dt} = \frac{N}{\tau}$

$$t_n = 879.4 \pm 0.6 \text{ s}$$

 $\frac{N(t_1)}{N(t_2)} = \exp\left(-\frac{t_1 - t_2}{\tau}\right)$

➡ "Neutron Lifetime Puzzle"

Systematic uncertainty of our first result is +15/-18 s. Dominant systematics for τ_n is uncertainty of the amount of gas induced background.

We are investigating the source of unknown gas background events.

We have performed measurements until 2019, and measurement environment has been upgraded.

➡ Some systematics will be improved.

Number density of ³He in TPC operation gas \rightarrow Sect. 4 II. Signal separation accuracy of β decay and ${}^{3}\text{He}(n,p){}^{3}\text{H}$ reaction

6. Conclusion and prospects

Conclusion:

- Neutron lifetime is important parameters for particle physics and astrophysics. New experiment with a different method to solve neutron lifetime puzzle is in progress at J-PARC. Our goal is to determine the neutron lifetime with accuracy of 1 s (0.1%).
- Our fist result is $\tau_n = 898 \pm 10$ (stat.) +15/-18(sys.) [s].
- We have performed lifetime measurements until 2019 and most of systematics will be reduced by less than 0.1% accuracy.

Prospects:

Upgrade of SFC is ongoing, and we will achieve 1 s (0.1%) statistics within 60 days.

$$E_n = dE'_n + \sum_{dL_i > dl/2} dE_i^* e^{-dL_i^2/2\sigma^2}$$

$$s \equiv \frac{\log\left(1 + f\frac{d(E - E_{\rm Fe})}{dl}G_0\right)}{f\frac{d(E - E_{\rm Fe})}{dl}G_0}$$

	Accuracy (before)	Accuracy (after)
$ ho_{ ext{inject}}$	0.3%	0.14%
ho TPC gas	0.2%	0.04%
Separation of He/ β	0.4%	0.1%