PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE

Light Exotic Λ-hypernuclei

S.V. SIDOROV^{1,2,3}, D.E. LANSKOY¹, T.YU. TRETYAKOVA^{1,2,3}

¹ Faculty of Physics, Moscow State University, Moscow, Russia
 ² Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
 ³ Joint Institute for Nuclear Research, Dubna, Russia

SEPTEMBER 8, 2021

Motivation:

New experimental capabilities for production of exotic hypernuclei in heavy ion collisions **Goals**:

> Predictions for hypernuclei with unbound nucleon cores

> Location of proton dripline on the hypernuclear chart for $5 \le Z \le 8$

Hypernuclear chart

- Particle stability of a nuclear core guarantees stable Λ hypernuclei
- $\circ~\Lambda$ -hyperon may reinforce the nuclear binding
- $\circ\,$ Glue-like role of Λ -hyperon: the hyperon can stabilize an unbound core

Skyrme-Hartree-Fock approach for hypernuclei

• Nucleon-nucleon Skyrme potential (Vautherin and Brink, 1972):

$$W_{NN}(\boldsymbol{r_1}, \boldsymbol{r_2}) = t_0(1 + x_0 P_{\sigma})\delta(\boldsymbol{r_{12}}) + \frac{1}{2}t_1(1 + x_1 P_{\sigma})(\boldsymbol{k}'^2 \delta(\boldsymbol{r_{12}}) + \delta(\boldsymbol{r_{12}})\boldsymbol{k}^2) + t_2(1 + x_2 P_{\sigma})\boldsymbol{k}'\delta(\boldsymbol{r_{12}})\boldsymbol{k} + \frac{1}{6}t_3\rho^{\alpha}(\boldsymbol{R})(1 + x_3 P_{\sigma})\delta(\boldsymbol{r_{12}}) + iW(\sigma_1 + \sigma_2)[\boldsymbol{k}' \times \delta(\boldsymbol{r})\boldsymbol{k}]$$

NN: SLy4, SkM*, SkIII

• Hyperon-nucleon Skyrme potential (Rayet, 1981):

$$V_{\Lambda N}(\boldsymbol{r}_{\Lambda},\boldsymbol{r}_{\boldsymbol{q}}) = t_0^{\Lambda} (1 + x_0^{\Lambda} P_{\sigma}) \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) + \frac{1}{2} t_1^{\Lambda} (\boldsymbol{k}^2 \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) + \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) \boldsymbol{k}'^2) + t_2^{\Lambda} \boldsymbol{k}' \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}}) \boldsymbol{k} + \frac{1}{6} t_3^{\Lambda} \rho^{\alpha}(\boldsymbol{R}) \delta(\boldsymbol{r}_{\Lambda \boldsymbol{q}})$$

ΛN: SLL4, SLL4' (Schulze and Hiyama, 2014), YBZ5 (Yamamoto et al, 1988),
LY1 (Lanskoy and Yamamoto, 1997), LY5r (Zhang et al, 2021), SkSH1 (Fernandez et al, 1989)

Hyperon binding energies in ${}^{A+1}_{\Lambda}Z$ hypernuclei

$$B_{\Lambda} \begin{pmatrix} A+1 \\ \Lambda Z \end{pmatrix} = B_{tot} \begin{pmatrix} A+1 \\ \Lambda Z \end{pmatrix} - B_{tot} \begin{pmatrix} A \\ Z \end{pmatrix}$$

- The difference in neighboring isobar chains is around 1 MeV for lighter hypernuclei, smaller as A increases
- Symmetric character of B_{Λ} with respect to isospin N Z

Light Exotic Λ-hypernuclei

S.V. Sidorov *et al*

Hyperon binding energies and radii of nuclear cores in ${}^{A+1}_{\Lambda}Z$ hypernuclei

Light Exotic Λ-hypernuclei

S.V. Sidorov et al

Hypernuclei near the proton dripline

While we do not claim outright that hypernuclear HF approach gives precise predictions for proton (or two-proton) separation energies of hypernuclei, we set the following idea as the cornerstone of our method: hypernuclear HF allows to reproduce the hyperon binding energy B_{Λ} in light Λ -hypernuclei. Proton (two proton) separation energy S_p (S_{2p}) can then be found using the relation:

$$S_p \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} = S_p \begin{pmatrix} A-1 \\ Z \end{pmatrix} + B_{\Lambda} \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} - B_{\Lambda} \begin{pmatrix} A-1 \\ \Lambda (Z-1) \end{pmatrix},$$

$$S_{2p} \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} = S_{2p} \begin{pmatrix} A-1 \\ Z \end{pmatrix} + B_{\Lambda} \begin{pmatrix} A \\ \Lambda Z \end{pmatrix} - B_{\Lambda} \begin{pmatrix} A-2 \\ \Lambda (Z-2) \end{pmatrix}.$$

and experimental data for $S_p({}^A_\Lambda Z)$ and $S_{2p}({}^A_\Lambda Z)$.

Here, $S_p(^{A-1}Z)$ or $S_{2p}(^{A-1}Z)$ is always taken from experiment, while B_{Λ} is calculated within HF approach when there are no experimental data available. Comparison between calculated values and experimental data on B_{Λ} in neighbouring nuclei can be used to verify the accuracy of our estimates for S_p (or S_{2p}) in proton-rich hypernuclei.

2p separation energy in $^{13}_{\Lambda}O$

¹²O is unstable with respect to 2 proton decay $(S_{2p})^{(12)} = -1,638 \text{ MeV}$, and ${}^{13}_{\Lambda}$ O is expected to decay similarly. On the left hand side we show

$$S_{2p} \begin{pmatrix} 13 \\ \Lambda 0 \end{pmatrix} = S_{2p} \begin{pmatrix} 12 \\ 0 \end{pmatrix} + B_{\Lambda} \begin{pmatrix} 13 \\ \Lambda 0 \end{pmatrix} - B_{\Lambda} \begin{pmatrix} 11 \\ \Lambda C \end{pmatrix}$$

exp $\int calc \int calc \int dc$

as a function of $B_{\Lambda} \begin{pmatrix} {}^{13}C \end{pmatrix}$ for different NN and ΛN Skyrme interactions. Most of the results are in good agreement with the experimental hyperon binding energy in ${}^{13}_{\Lambda}C$.

$^{13}_{\Lambda}$ O is unbound

 $^{8}_{\Lambda}$ B, $^{12}_{\Lambda}$ N are also unbound

2p separation energy in $^{9}_{\Lambda}$ C

While ⁸C decays primarily by emitting 4 protons, ${}_{\Lambda}^{9}$ C has 2 proton decay as critical decay mode, with bound ${}_{\Lambda}^{7}$ Be as a daughter hypernucleus. On the left hand side we show

 $S_{2p} \begin{pmatrix} 9 \\ \Lambda C \end{pmatrix} = S_{2p} \begin{pmatrix} 8 \\ C \end{pmatrix} + B_{\Lambda} \begin{pmatrix} 9 \\ \Lambda C \end{pmatrix} - B_{\Lambda} \begin{pmatrix} 7 \\ \Lambda Be \end{pmatrix}$ exp (-2.14 MeV) f exp (5.16 MeV) f

as a function of B_{Λ} in ${}^{9}_{\Lambda}B$ and ${}^{9}_{\Lambda}Li$ for different NN and ΛN Skyrme interactions. The better $B_{\Lambda}({}^{9}_{\Lambda}B)$ and $B_{\Lambda}({}^{9}_{\Lambda}Li)$ are described, the stronger is the twoproton binding in ${}^{9}_{\Lambda}C$, indicating that $S_{2p}({}^{9}_{\Lambda}C) > 0$.

 $^{9}_{\Lambda}$ C is bound!

Skyrme $\Lambda\Lambda$ -interaction for double- Λ hypernuclei

Due to glue-like role of Λ -hyperon, there is a chance to stabilize the hypernuclei ${}^{8}_{\Lambda}B$, ${}^{12}_{\Lambda}N$ and ${}^{13}_{\Lambda}O$ by adding yet another Λ -hyperon. $\Lambda\Lambda$ -interaction then needs to be taken into account

• Hyperon-hyperon Skyrme potential:

 $V_{\Lambda\Lambda}(\boldsymbol{r_1}, \boldsymbol{r_2}) = \lambda_0 \delta(\boldsymbol{r_{12}}) + \frac{1}{2} \lambda_1 (\boldsymbol{k}^{\prime 2} \delta(\boldsymbol{r_{12}}) + \delta(\boldsymbol{r_{12}}) \boldsymbol{k}^2) + \lambda_2 \boldsymbol{k}^{\prime} \delta(\boldsymbol{r_{12}}) \boldsymbol{k}$ AA: SAA1', SAA3' (Lanskoy, 1998, Minato and Hagino, 2011)

Proton (two proton) separation energy $S_p(S_{2p})$ can then be found using the relation:

$$S_p \begin{pmatrix} A \\ \Lambda \Lambda \end{pmatrix} = S_p \begin{pmatrix} A-2 \\ Z \end{pmatrix} + B_{\Lambda \Lambda} \begin{pmatrix} A \\ \Lambda \Lambda \end{pmatrix} - B_{\Lambda \Lambda} \begin{pmatrix} A-1 \\ \Lambda \Lambda \end{pmatrix},$$

$$S_{2p} \begin{pmatrix} A \\ \Lambda \Lambda \end{pmatrix} = S_{2p} \begin{pmatrix} A-2 \\ Z \end{pmatrix} + B_{\Lambda \Lambda} \begin{pmatrix} A \\ \Lambda \Lambda \end{pmatrix} - B_{\Lambda \Lambda} \begin{pmatrix} A-2 \\ \Lambda \Lambda \end{pmatrix};$$

Here, 2 hyperon binding energy is:

$$B_{\Lambda\Lambda} \begin{pmatrix} A \\ \Lambda\Lambda \end{pmatrix} = B_{tot} \begin{pmatrix} A \\ \Lambda\Lambda \end{pmatrix} - B_{tot} \begin{pmatrix} A-2 \\ Z \end{pmatrix}$$

2p separation energy in $^{14}_{\Lambda\Lambda}$ O

$$S_{2p} \begin{pmatrix} 14\\\Lambda\Lambda 0 \end{pmatrix} = S_{2p} \begin{pmatrix} 12\\0 \end{pmatrix} + B_{\Lambda\Lambda} \begin{pmatrix} 14\\\Lambda\Lambda 0 \end{pmatrix} - B_{\Lambda\Lambda} \begin{pmatrix} 12\\\Lambda\Lambda C \end{pmatrix}$$

as a function of $B_{\Lambda} \begin{pmatrix} 13 \\ \Lambda \end{pmatrix}$ for different NN and ΛN Skyrme interactions. Earlier we concluded ${}^{13}_{\Lambda}O$ is unbound; addition of another hyperon stabilizes the hypernucleus.

 $^{14}_{\Lambda\Lambda}$ O is bound!

Proton separation energy in $^{9}_{\Lambda\Lambda}B$

$$S_{p} \begin{pmatrix} 9 \\ \Lambda \Lambda \end{pmatrix} = S_{p} \begin{pmatrix} 7 \\ B \end{pmatrix} + B_{\Lambda \Lambda} \begin{pmatrix} 9 \\ \Lambda \Lambda \end{pmatrix} - B_{\Lambda \Lambda} \begin{pmatrix} 8 \\ \Lambda \Lambda \end{pmatrix} = C_{alc}$$

as a function of $B_{\Lambda} \begin{pmatrix} 8 \\ \Lambda Be \end{pmatrix}$ for different NN and ΛN Skyrme interactions. While we concluded ${}^{8}_{\Lambda}B$ is unbound,

 $^{9}_{\Lambda\Lambda}$ B is possibly bound.

Hypernucleus $^{13}_{\Lambda\Lambda}$ N is found to be unbound.

Conclusions

Hypernuclear Hartree-Fock approach was utilized to study the properties of light proton-rich Λ -hypernuclei.

➢ Hyperon binding energy vs isospin dependence is more pronounced for the cases with more dramatic density changes, and the corresponding nuclei should be chosen as sources of information on ∧N interaction

>Among the studied hypernuclei:

- Z = 5: ⁸_AB is unbound, ⁹_{AA}B could possibly be bound,
- $Z = 6: {}^{9}_{\Lambda}C$ is bound, therefore ${}^{10}_{\Lambda\Lambda}C$ is also evidently bound,
- Z = 7: ${}^{12}_{\Lambda}$ N and ${}^{13}_{\Lambda\Lambda}$ N are unbound,
- Z = 8: ${}^{13}_{\Lambda}0$ is unbound, while ${}^{14}_{\Lambda\Lambda}0$ is bound.

Thank you for your attention