Experimental status toward the direct lifetime measurement of Hypertriton using the (K⁻, π^0) reaction at J-PARC

Osaka University T. Akaishi For the J-PARC E73 collaboration

Outline

Introduction

Hypertriton lifetime

Motivation of J-PARC E73 experiment

J-PARC E73 experiment Experimental principle Result of ⁴ H data

 $>^{3}_{\Lambda}H$ production result with pilot run

Summary

Introduction

Hypertriton (³_ΛH): Lightest hypernucleus with p, n and Λ
 >Benchmark for hypernuclear physics

Small binding energy by emulsion data has been generally accepted.

 $B_{\wedge} = 130 \pm 50 \text{ keV}$

✓Small B_Λ → large separation between Λ & d → lifetime τ ~ free Λ is naively expected

Hypertriton lifetime puzzle

Exp.	Lifetime	
HypHI(2013)	$183^{+42}_{-32} \pm 37 \text{ ps}$	
ALICE(2016)	181 ⁺⁵⁴ ± 33 ps	
STAR(2018)	$142^{+24}_{-21} \pm 29 \text{ ps}$	
Free Λ(263 ps)		

>Short lifetimes from heavy ion experiments in 2010's

Hypertriton lifetime puzzle

Toward solving hypertriton lifetime puzzle

• the detail of the ${}^3_{\Lambda}$ H should be clearly understood \Rightarrow an independent and complementary approach

0.8

0.6

1.2

LAB MOMENTUM p_K- (GeV/c)

1.0

 produce the ground state of ³_AH(1/2⁺)
 provide important data on the hypertriton lifetime puzzle

2.0

1.8

1.6

2021/09

1.4

HI exp. vs direct measurement

Experiments on Hypertriton

Heavy ion-based experiments

- ≻STAR
- ►ALICE
- ≻GSI (WASA-FRS experiment)
- Counter experiments for lifetime
 >ELPH, Tohoku-U, Japan: (γ, K⁺)
 >J-PARC P74: (π⁻, K⁰)
 >J-PARC E73: (K⁻, π⁰) ← Our project

Binding energy measurement MAMI (e, e'K) decay pion spectroscopy JLab (e, e'K) LPARC E07: Emulsion full scope

>J-PARC E07: Emulsion full scan

Hypertriton still motivates activates studies

J-PARC E73 experiment

J-PARC E73: Experimental principle ^γ³He(K⁻, π⁰)³, H reaction

(1)tag (K⁻, π⁰) reaction by detecting forward single high-energy gamma with calorimeter →almost 100% detection efficiency for forward going π⁰ (0< $θ_{lab}^{π_0}$ <10) ⇒tag Λ production with low recoil momentum Reduce BG from Y decays and multi pion production

J-PARC E73 experiment √³He(K⁻, π⁰)³∧^H reaction

②Measure Momentum and Timing with Cylindrical Detector System (CDS) select the mono-momentum of π- after 2-body decay low recoil momentum (~100 MeV/c)
 →Hypertriton stops immediately inside the target
 ⇒2-body decay "almost" at rest

Identify ${}^{3}_{\Lambda}H$ and derive lifetime from decay time

2021/09/0

PANIC 2021

2021/09/05

PbF₂ calorimeter performance

>PbF2 calorimeter is installed into the meson beam line to tag fast π⁰
 >40 segments used

Strategy of J-PARC E73

Phase-0

- >Feasibility study of new method with the (K-, π^0) reaction using ⁴He target
- ⇒expected to be relatively easy to generate and identify ⁴[∧]H
 > Data taking in June 2020 (3 d)

Phase-1

>Production cross section study for ${}^{3}_{\Lambda}H$ >Data taking in May 2021(4 d)

Phase-2

>Direct lifetime measurement for ${}^{3}_{\Lambda}H$ >planned in FY2022 (1 month)

Hypernucleus	${}^{4}{}_{\Lambda}H$	${}^3\Lambda H$
Branching ratio to 2-body decay	50 %	25 %
Relative cross section	1	0.3-0.4
Relative yield	1	0.15-0.2

calculation of cross section by Prof. Harada T. Harada and Y. Hirabayashi, https://arxiv.org/abs/2106.04256v2

J-PARC K1.8BR Beamline

2021/09/05

Phasae-0: Feasibility study

 \Rightarrow Improved S/N ratio(3/2 \rightarrow 4/1) Red line

Successfully established new method of (K-, pi0) reaction

2021/09/05

Phasae-0: timing spectrum of ${}^{4}_{\Lambda}$ H data

Phase-1: pi- momentum dis. of ${}^{3}_{\Lambda}H$

2021/09/0

Summary

J-PARC E73: Direct measurement of ³_AH lifetime
 Different experimental method from heavy ion-based experiment
 Selectively produce ground state of ³_AH(1/2⁺)

• Current status of the experiment > Phase-0: established a method by (K⁻, π^0) reaction $\Rightarrow {}^4_{\Lambda}$ H lifetime

```
>Phase-1: confirmed {}^{3}_{\Lambda}H production
⇒cross section of {}^{3}_{\Lambda}H
```

```
>Phase-2: {}^{3}_{\Lambda}H lifetime measurement
~ 1 month beam time, {}^{3}_{\Lambda}H ~1000 events, ~10 % error
→ in FY2022
```


J-PARC E73 collaboration

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

 ¹Osaka University, Osaka, 560-0043, Japan
 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
 ⁹Tohoku University, Miyagi, 982-0826, Japan

Backup

