

Measurement of proton-deuteron correlations in pp collisions at $\sqrt{s} = 13$ TeV

Michael Jung on behalf of the ALICE Collaboration

Goethe-Universität Frankfurt

08th of September 2021

- The proton-deuteron interaction is well known from scattering experiments
- Production mechanism of light nuclei is not yet clear
 - $\rightarrow\,$ Statistical Hadronisation Model abundances from statistical equilibrium at the common freeze-out temperature
 - → Coalesence Model particles close in phase space (overlapping nuclear wave-functions) can form a nucleus

- Correlations of p-d
 - $\rightarrow\,$ can be used as a probe for the formation time of the deuteron

September 08, 2021 Measurement of p-d correlations in pp collisions at $\sqrt{s} = 13$ TeV – Michael Jung

р. З

Two-particle correlations

•

• Correlation function as a function of the relative momentum: $|k^* = \frac{1}{2} \cdot |\vec{p}_1 - \vec{p}_2|$

Use the two-particle wave functions and the source geometry (study interaction)

September 08, 2021 Measurement of p-d correlations in pp collisions at $\sqrt{s} = 13$ TeV – Michael Jung

Two-particle correlations

- Correlation function as a function of the relative momentum: $|k^* = \frac{1}{2} \cdot |\vec{p}_1 \vec{p}_2|$
- Use the two-particle wave functions and the source geometry (study interaction)

(2018)

78:394

Ū

European Physical Journal

Mihaylov et al.

September 08, 2021 Measurement of p-d correlations in pp collisions at $\sqrt{s} = 13$ TeV – Michael Jung

p. 5

ALICE

Use the two-particle wave functions and the source geometry (study interaction)

 $C(k^*) = \int S(\vec{r}) \cdot \left| \Psi(\vec{k^*}, \vec{r}) \right|^2 d^3 \vec{r} = N \cdot \frac{SE}{ME} < 1$ theoretical definition experimental definition particle 1 LHC beam particle 2 Emission source LHC beam

Development of femtoscopy in nuclear physics

	known	study	example
1.	FSI	source	р-р
2.	source	FSI	Λ - Λ
3.	FSI & source	production mechanism	p-d

• Correlation function as a function of the relative momentum: $k^* = \frac{1}{2} \cdot |\vec{p}_1 - \vec{p}_2|$

•

Measurement of p-p correlation

- proton-proton correlation perfectly understood
- Taken into account:
 - Coulomb interaction
 - Strong interaction
 - Anti-symmetric wave-functions
- Calculation in good agreement
- Source size can be extracted

p. 8

Particle Identification

September 08, 2021

- The Time Projection Chamber and the Time of Flight are used to identify protons and deuterons
- p_{T} of protons: 0.5 GeV/ $c < p_{T} < 4.05$ GeV/c (purity: ~98%)
- p_{T} of deuterons: 0.5 GeV/ $c < p_{T} < 1.40$ GeV/c (purity: ~100%)

Measurement of p-d correlations in pp collisions at $\sqrt{s} = 13$ TeV – Michael Jung

- Combined p-d and $\overline{p} \overline{-d}$ correlations
- Statistics below *k** = 200 MeV/*c*
 - <u>p-d</u> pairs: 1747
 - p-d pairs: 1250
- Blue box around 1: uncertainty due to normalization procedure
- The correlation shows a significant depletion at low k*

Calculated correlation function using a Coulomb-corrected wave-function for charged

particles Lednický, R. Phys. Part. Nuclei 40, 307-352 (2009)

• Use measured scattering lengths: $\underbrace{\underbrace{\$}_{0}}{0}$ Van Oers et al. (1967) $1.30_{-0.2}^{+0.2}$ fm $11.40_{-1.2}^{+1.8}$ fm Arvieux (1974) $2.73_{-0.1}^{+0.1}$ fm $11.88_{-0.1}^{+0.4}$ fm Huttel et al. (1983) 4.0 fm 11.3 fm

Huttel et al. (1983)4.0 fm11.3 fmKievsky et al. (1997)0.024 fm13.8 fmBlack et al. (1999) $-0.13^{+0.04}_{-0.04} \text{ fm}$ $14.70^{+2.3}_{-2.3} \text{ fm}$

Van Oers, Brockman. *Nuclear Physics, A* 92:561-583 (1967) Arvieux. *Nuclear Physics A*, 221:253-268 (1973) Huttel et al. *Nuclear Physics A*, 406:443-455 (1983) Kievsky et al. *Physics Letters B*, 406:292-296 (1997) Black et al. *Physics Letters B*, 471:103-107 (1999)

• The calculated correlation differs dramatically from the measurement

ALI-PREL-486425

September 08, 2021

Case 1: Proton and Deuteron are formed at the same time

 \rightarrow The p-d correlation should reflect the strong interaction

Case 1: Proton and Deuteron are formed at the same time

 \rightarrow The p-d correlation should reflect the strong interaction

Case 2: Deuteron is formed late

 \rightarrow The interaction between the particles weakens

large source size: ~ 10 fm

• There is still a discrepancy between

 This could be a hint for coalesence of ³He

•

• Theoretical radius scan using the Kievsky parameters Kievsky et al. *Physics Letters B*, 406:292-296 (1997)

data and calculation in the first bin

ALICE Preliminary

Increasing the source radius further

٠

Going to larger distances allows to neglect the strong interaction

• Summary

- Measured correlation function and calculation are not in agreement
- Interpretation
 - Late formation time of the deuteron
 - Hint for coalescence of ³He
- Outlook:
 - More precise data with Run 3

Thank you for your attention