

S-shell Λ & $\Lambda\Lambda$ hypernuclei based on chiral interactions

Hoai Le, IKP & IAS Forschungszentrum Jülich, Germany in collaboration with Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

PANIC2021, Lisbon, 5-10 Sep. 2021

Baryon-Baryon interactions in χ **EFT**

LO: H. Polinder et al., NPA 779 (2006). NLO: J. Haidenbauer et al., NPA 915 (2013)

- degrees of freedom: octet baryons $(N, \Lambda, \Sigma, \Xi)$, pseudoscalar mesons (π, K, η)
- based on Weinberg power counting as in the NN case

- LECs are determined via a fit to experimental data:
 - NN: > 5000 data + deuteron \longrightarrow sophisticated NN potentials up to N⁴LO+

(P. Reinert et al. EPJA 54 (2018), D. R. Entem et al PRC 68 (2003))

- YN: \sim 37 data, no two-body YN bound state
- YY: no direct YY scattering data, no YY bound state

YN and YY potentials up to NLO

YY interactions up to NLO

NLO: J. Haidenbauer et al., NPA 954 (2016) 273, EPJA 55 (2019) 23 LO: H. Polinder et al., PLB 653 (2007) 29.

100

100

90

- some data for ΞN (in)elastic cross sections (200 < P_{Ξ} < 800 MeV/c)
- $\Lambda\Lambda$ hypernuclei: ${}^{6}_{\Lambda\Lambda}$ He (Nagara), ${}^{10}_{\Lambda\Lambda}$ Be, ${}^{11}_{\Lambda\Lambda}$ Be

 $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} ({}^{6}_{\Lambda\Lambda} \text{He}) - 2B_{\Lambda} ({}^{5}_{\Lambda} \text{He}) = 0.67 \pm 0.17 \text{ MeV} \quad (\text{ K. Nakazawa NPA 835 (2010)})$

 use SU(3)_f to relate LECs in S=-2 sector to LECs in S=-1 sector
additional constraints on YN, YY interactions are expected from studying Λ, ΛΛ hypernuclei

Our aim:

- develop Jacobi NCSM for S=-1,-2 hypernuclei
 - based on realistic chiral NN, YN and YY interactions
 - $\Lambda N \Sigma N$, $YY \Xi N$ conversions are explicitly taken into account
 - \rightarrow study predictions of chiral YN and YY potentials for A=4-7 Λ , $\Lambda\Lambda$ hypernuclei
 - provide useful constraints to improve YY, YN interactions

Jacobi no-core shell model (J-NCSM)

• an expansion of the wavefunction in a many-body HO basis depending on Jacobi coordinates

$$\mathbf{p}_{12} = \frac{m_2}{m_1 + m_2} \,\mathbf{k}_1 - \frac{m_1}{m_1 + m_2} \,\mathbf{k}_2,$$
$$\mathbf{p}_3 = \frac{m_1 + m_2}{m_1 + m_2 + m_3} \,\mathbf{k}_3 - \frac{m_3}{m_1 + m_2 + m_3} (\mathbf{k}_1 + \mathbf{k}_2)$$

explicit removal of c.m. motion

. . .

- antisymmetrization of basis states is demanding $(A \le 9)$
- all particles are active (no inert core) employ microscopic BB interactions

Similarity Renormalization Group (SRG)

- pre-diagonalize the Hamiltonian via SRG
 - F.J. Wegner NPB 90 (2000). S.K. Bogner et al., PRC 75 (2007)

$$\frac{dV_s}{ds} = \left[\left[\sum \frac{p^2}{2\mu}, V_s \right], H_s \right], \qquad H_s = T_{rel} + V_s = T_{rel} + V_s^{NN} + V_s^{YN} + V_s^{YY}$$

• restrict to 2-body space \longrightarrow V_s^{NN} , V_s^{YN} , V_s^{YY} can be evolved separately

Results for $A = 4 - 7 \Lambda$ hypernuclei

(H. Le, J. Haidenbauer, U.-G. Meißner, A. Nogga PLB (2020), EPJA 8 (2020))

Impact of YN interactions on B_{Λ}

- NLO13 and NLO19 are almost phase equivalent
- NLO13 leads to a stronger $\Lambda N \Sigma N$ transition \longrightarrow manifest in higher-body observables

- cutoff dependence is larger for NLO19 less freedom to absorb cutoff artifacts into LECs
- $B_{\Lambda}(\text{NLO19}) > B_{\Lambda}(\text{NLO13})$ \longrightarrow possible contribution of chiral YNN force

Impact of YN interactions on B_{Λ}

- NLO13 and NLO19 are almost phase equivalent
- NLO13 leads to a stronger $\Lambda N \Sigma N$ transition \longrightarrow manifest in higher-body observables

- cutoff dependence is larger for NLO19 less freedom to absorb cutoff artifacts into LECs
- $B_{\Lambda}(NLO19) > B_{\Lambda}(NLO13)$ \longrightarrow possible contribution of chiral YNN force
- strong dependence of B_{Λ} on λ_{YN} \longrightarrow contribution of SRG-induced YNN force is significant

(R. Wirth et al PRL (2014,2016), PRC(2018))

Correlation of the Λ -separation energies

• B_{Λ} of different hypernuclei computed for a same range of λ_{YN} are strongly correlated

- $B_{\Lambda} \text{ of } {}^{3}_{\Lambda}\text{H}, {}^{4}_{\Lambda}\text{He}(1^{+}), {}^{5}_{\Lambda}\text{He} \text{ and } {}^{7}_{\Lambda}\text{Li} \text{ are well reproduced at } \lambda_{YN} = 0.84 \text{ fm}^{-1}$
 - → minimize effect of (SRG-induced) YNN forces by tuning λ_{YN} so that a particular hypernucleus ($^{5}_{\Lambda}$ He) is described properly

Impact of an increased $B_{\Lambda}(^{3}_{\Lambda}H)$ on $^{7}_{\Lambda}Li$ spectrum

• Choose λ_{YN} to reproduce: $B_{\Lambda}(^{5}_{\Lambda}\text{He}) = 3.12 \pm 0.02 \text{ MeV}$

 $B_{\Lambda}(^{3}_{\Lambda}H) = 0.13 \pm 0.05 \text{ MeV}$ (up to 2019: NLO13, NLO19) = 0.41 ± 0.12 MeV (STAR 2019: FITA, FITB, FITC)

NN: SMS-N⁴LO+(450)

• overall effect of an increased $B_{\Lambda}(^{3}_{\Lambda}H)$ on $^{7}_{\Lambda}Li$ spectrum is small

Results for ${}^{6}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ He, ${}^{4}_{\Lambda\Lambda}$ H

(H. Le, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 57 (2021))

 $^{6}_{\Lambda\Lambda}$ He(0⁺,0)

NN : N⁴LO + (450), $\lambda_{NN} = 1.6 \text{ fm}^{-1}$, YN : NLO19(650), $\lambda_{YN} = 0.87 \text{ fm}^{-1}$

reproduce separation energies of ${}^{4}_{\Lambda}$ He(1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, but slightly underbind ${}^{4}_{\Lambda}$ He(0⁺)

Probabilities (%) of finding $\Sigma, \Sigma\Sigma, \Xi$ in $^{6}_{\Lambda\Lambda}$ He

- Effect of SRG-induced YYN forces is negligible
- NLO results are comparable to the Nagara, LO overbinds the system
- $P_{\Lambda\Sigma}, P_{\Sigma\Sigma} \approx P_{\Sigma}(^{5}_{\Lambda}\text{He})$ are less sensitive to SRG-YY

• effect of SRG-induced YYN force on $\Delta B_{\Lambda\Lambda}$, $B_{\Lambda\Lambda}$ is minor

- effect of SRG-induced YYN force on $\Delta B_{\Lambda\Lambda}$, $B_{\Lambda\Lambda}$ is minor
- Large difference between $\Delta B_{\Lambda\Lambda}$: $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) > \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$ FY calculations: $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$ (I. Filikhin, A. G

(K. S. Myint et al EPJ (2003))

(I. Filikhin, A. Gal NPA 707 (2002))

- $P = P_{\Xi}({}^{6}_{\Lambda\Lambda}\text{He}) < P_{\Xi}({}^{5}_{\Lambda\Lambda}\text{He})$
 - $\Rightarrow \Lambda \Lambda \Xi N$ transition is suppressed in ${}^{6}_{\Lambda \Lambda}$ He
 - B. F. Gibson PTPS 117, 339 (1994)E. Hiyama et al. PPNP (2009)

	$^{5}_{\Lambda\Lambda}$ He		$^{6}_{\Lambda\Lambda}$ He	
	P_{Ξ}	$B_{\Lambda\Lambda}$	P_{Ξ}	$B_{\Lambda\Lambda}$
$\text{NLO}(\lambda_{YY} = 2)$	0.38	3.67 ± 0.03	0.07	7.62 ± 0.02
$LO(\lambda_{YY} = 2)$	1.36	4.53 ± 0.01	0.84	8.40 ± 0.02

- effect of SRG-induced YYN force on $\Delta B_{\Lambda\Lambda}$, $B_{\Lambda\Lambda}$ is minor
- Large difference between $\Delta B_{\Lambda\Lambda}$: $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) > \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$ FY calculations: $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$ (I. Filikhin, A. G

(K. S. Myint et al EPJ (2003))

(I. Filikhin, A. Gal NPA 707 (2002))

- $P_{\Xi}({}^{6}_{\Lambda\Lambda}\text{He}) < P_{\Xi}({}^{5}_{\Lambda\Lambda}\text{He})$
 - $\Rightarrow \Lambda \Lambda \Xi N$ transition is suppressed in ${}^{6}_{\Lambda \Lambda}$ He
 - B. F. Gibson PTPS 117, 339 (1994)E. Hiyama et al. PPNP (2009)

	$^{5}_{\Lambda\Lambda}$ He		$^{6}_{\Lambda\Lambda}$ He	
	P_{Ξ}	$B_{\Lambda\Lambda}$	P_{Ξ}	$B_{\Lambda\Lambda}$
$\text{NLO}(\lambda_{YY} = 2)$	0.38	3.67 ± 0.03	0.07	7.62 ± 0.02
$LO(\lambda_{YY} = 2)$	1.36	4.53 ± 0.01	0.84	8.40 ± 0.02
mNDs*		3.66	0.28	7.54

* H. Nemura et al., PRL 94 (2005)

NLO leads to a particle unstable ${}^4_{\Lambda\Lambda}$ H. Existence of $A = 4 \Lambda\Lambda$ hypernucleus is unlikely

Summary

- develop J-NCSM for $\Lambda \& \Lambda \Lambda$ hypernuclei up to p-shell
- study the predictions of YN NLO13 & NLO19 for hypernuclear observables
 - → the difference in NLO13 & NLO19 predictions are attributed to YNN force
- SRG-YN evolutions strongly affect Λ -separation energies
 - B_{Λ} of different systems are strongly correlated
 - overall impact of an increased $B_{\Lambda}({}^{3}_{\Lambda}H)$ on spectrum of ${}^{7}_{\Lambda}Li$ is small
- investigate ${}^{6}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ He, ${}^{4}_{\Lambda\Lambda}$ H using chiral YY LO & NLO interactions
 - SRG YY evolution has minor effects on $\Delta B_{\Lambda\Lambda}$ and $P_{\Lambda\Sigma}$, $P_{\Sigma\Sigma}$
 - LO overbinds ${}^{6}_{\Lambda\Lambda}$ He; NLO results are comparable to experiment
 - both interactions result in $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}), {}^{4}_{\Lambda\Lambda}\text{H}$ is unstable
- inclusion of χEFT and SRG-induced 3N forces, SRG-induced YNN forces is in progress
- investigate the existence of s-shell Ξ hypernuclei using YY NLO (in print)

Summary

- develop J-NCSM for $\Lambda \& \Lambda \Lambda$ hypernuclei up to p-shell
- study the predictions of YN NLO13 & NLO19 for hypernuclear observables
 - → the difference in NLO13 & NLO19 predictions are attributed to YNN force
- SRG-YN evolutions strongly affect Λ -separation energies
 - B_{Λ} of different systems are strongly correlated
 - overall impact of an increased $B_{\Lambda}(^{3}_{\Lambda}H)$ on spectrum of $^{7}_{\Lambda}Li$ is small
- investigate ${}^{6}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ He, ${}^{4}_{\Lambda\Lambda}$ H using chiral YY LO & NLO interactions
 - SRG YY evolution has minor effects on $\Delta B_{\Lambda\Lambda}$ and $P_{\Lambda\Sigma}$, $P_{\Sigma\Sigma}$
 - LO overbinds ${}^{6}_{\Lambda\Lambda}$ He; NLO results are comparable to experiment
 - both interactions result in $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}), {}^{4}_{\Lambda\Lambda}\text{H}$ is unstable
- inclusion of χEFT and SRG-induced 3N forces, SRG-induced YNN forces is in progress
- investigate the existence of s-shell Ξ hypernuclei using YY NLO (in print)

Thank you for your attention!

Correlation of the $\Lambda\text{-separation}$ energies

• Choose λ_{YN} to reproduce: $B_{\Lambda}({}^{5}_{\Lambda}\text{He}) = 3.12 \pm 0.02 \text{ MeV}$

 $B_{\Lambda}(^{3}_{\Lambda}\text{H}) = 0.13 \pm 0.05 \text{ MeV}$

(before 2019: NLO13, NLO19)

 $= 0.41 \pm 0.12 \,\mathrm{MeV}$

(STAR 2019: FITA, FITB, FITC)

