

Studying the structure of a bound proton through polarization-transfer measurements

Tim Kolar PANIC 2021 Conference Lisbon, 5. 9. 2021

Motivation

• Does the proton change when embedded in nucleus?

VS.

Motivation

• EMC effect: nucleus does have an affect on proton partonic structure

The per-nucleon cross-section ratio of various nuclei to deuterium as measured at SLAC (Gomez et al., 1994)

Quasi-elastic scattering

Polarization transfer in $A(\vec{e}, e'\vec{p})$ reaction

Polarization transfer in $A(\vec{e}, e'\vec{p})$ reaction

Polarization transfer in $A(\vec{e}, e'\vec{p})$ reaction

Polarization transfer experiments

• Universal behaviour for different nuclei

Polarization transfer experiments

• Universal behaviour for different nuclei

Dominated by other nuclear medium effects, such as *final-state interactions* (FSI), *meson-exchange currents* (MEC) and *isobar currents* (IC)
 → need to be accounted for with theoretical calculations

Different Approach

Experimental setup in A-Hall at Mainz

\circ A1-Hall

3 magnetic spectrometers

The Experiment - kinematics

• Central kinematics:

$E_{\rm beam}$	[MeV]	600
Q^2	$\left[\mathrm{GeV}^2/c^2\right]$	0.175
p_e	[MeV/c]	368
$ heta_e$	[°]	-52.9
p_p	[MeV/c]	665
$ heta_p$	[°]	37.8
$p_{ m miss}$	[MeV/c]	-270 to -100
ν	$\left[\mathrm{MeV}^2/c^2\right]$	-160 to -40

• Covered p_{miss} - ν phase space:

The Experiment

 \circ Separation of protons ejected from s and p shell

Limits were based on previously measured spectral functions for ^{12}C (Dutta, 2003)

$$p_{3/2}$$
 shell: $14 \le E_{miss} \le 25 \text{ MeV}$
 $s_{1/2}$ shell: $30 \le E_{miss} \le 60 \text{ MeV}$

• Individual polarization components

The Experiment - Results

• Polarization double ratio - comparison between the two ¹²C shells in the virtuality overlap region

- \rightarrow Forming polarization double ratio $\frac{(P'_x/P'_z)^s_{12_{\rm C}}}{(P'_x/P'_z)^p_{12_{\rm C}}}$ reduces FSI contribution
- \rightarrow Based on the s- and p- shell comparison there is no density-dependent modification of protons with the same virtuality

The Experiment - Results

• Polarization double ratio - comparison with a free proton

 \to Observed universality of $\frac{(P_x/P_z)_A}{(P_x/P_z)_H}$ when examined as function of virtuality is perserved

Conclusions

- We presented a novel method for exploration of in-medium effects with polarization transfer method
- Theoretical imput remains mandatory
- For protons of the same virtuality we did not observe any density-dependent modifications
- Perserved universality of $\frac{(P_x/P_z)_A}{(P_x/P_z)_H}$ when examined as function of virtuality
- \circ Similar experiment with $^{40}\mathrm{Ca}$ target is approved to run at MAMI

Thank you!

