1. Running b-quark mass
 - Quarks can not be observed
 - "Single" quark masses are not observables, and they are observed as running parameters (running mass)
 - Running mass is described by RGE:
 \[\frac{d\mu}{dy} = -y \left(a_0 \rho_0 + a_1 \rho_1 \right) \mu \]
 - \(a_0 \): renormalization scale
 - \(a_1 \): Perturbative function

2. Inferring of running b-quark mass
 - Quarks and gluons appear as jets
 - Running quark masses are obtained from hadronic observables
 - Exclusive observables (e.g. three jet rates) have better sensitivity (by a factor of 10 @250-GeV) of quark mass
 - Jet should be defined so that avoid infrared/soft/collinear divergence
 - Jet-Clustering algorithm (JADE, DURHAM, CAMBRIDGE) uses
 - Radiative return cut
 - \(R^q = \frac{\Gamma(\bar{q}q \to f \bar{f})}{\Gamma(\bar{q}q)} \quad \text{Total width for } e^+e^- \to \bar{q}q \)
 - The b-quark mass at Z-pole has been measured precisely at LEP/SLD
 - b-quark mass at high energies
 - Estimate dominant systematic errors at 250GeV ILC and Giga-Z ILC

3. Definition of the Observable
 - Consider double-ratio \(R^q \) as the observable
 - Cancel or reduce EW corrections and systematic uncertainties (hadronization effect)
 - \(R^q = \frac{\Gamma(\bar{q}q \to f \bar{f})/\Gamma(\bar{q}q)}{\Gamma(\bar{q}q \to f \bar{f})/\Gamma(\bar{q}q)} \)
 - (history correction)
 - \(\Delta m_q \) (e.g. CAMBRIDGE predictions are given below)

4. Sensitivity of b-quark mass at high energies
 - Sensitivity of b-quark mass for 250GeV is given by \(a_{\mu} \sim (1-3R^q) \)
 - If we want \(\Delta m_q = 0.4 \) GeV, we need to measure \(R^q \)
 - with a precision of 1% (for Z-pole) and 0.1% (for 250 GeV)
 - The sensitivity at 250 GeV is ~5 times deteriorated

5. Environment of 250GeV measurement
 - Signal event: \(e^+e^- \rightarrow q\bar{q} \quad (q = u, d, s, b) \)
 - BKG events:
 1. Radiative return (\(w < 50 \) GeV ISR)
 2. Di-boson events
 - Luminosity: 2ab^{-1} with two polarizations \((P_+ P_-) \) = (-0.8, 0.3) and (+0.8, -0.3)
 - Used old DBD sample, event generated by LO for massless quarks in WHIZARD
 - Mass effects are only implemented in PYTHIA/PS+Hadronization
 - Situation is completely different from LEP’s Z-pole measurement

6. Event selection
 - Radiative return cut
 - Construct ISR energy from 2-jets kinematically and remove visible \(y_s \)
 - \(\phi \): angle of ISR jet
 - Di-boson events cut: use \(\text{Thrust} > 0.85 \)
 - Flavor-tagging Efficiency: 80% (for b), 58% (for uds)
 - Purity: 98% (for b), 96.1% (for uds)
 - Jet-reconstruction: CAMBRIDGE algorithm \(w/\chi^2 < 0.01 \)

7. Assessment of uncertainties
 - The mass effects are not implemented in the current MC, but corrections between different levels are worthwhile:
 - Hadronization model
 - LEP's time: 0.2% uncertainty on \(c_{\text{had}} \)
 - Both corrections are close to 1
 - Estimate systematic uncertainties from these corrections:
 - Detector correction
 - From trigger to signal, 100 times larger statistics
 - Propagated flavor-tagging efficiency (0.1-0.5%) and BKG contaminations
 - Assumed high efficiency
 - Updated b-quark mass evolution

8. Conclusion and Prospects
 - ILC 250GeV measurement has limited b-quark mass sensitivity, but it will add a new point at never proved energy
 - Giga-Z ILC will provide superior result at 2-pole than LEP and better QCD test