Prospects for the measurement of b-quark mass at the ILC

Seidai Tairafune (Tohoku University) on behalf of the ILD concept group

Juan Fuster, Adrian Irles, German Rodrigo, Marcel Vos, Hotoshi Yamamoto, Ryo Yonamine

PANIC 2021 Conference

1. Running b-quark mass

- Quarks can not be observed
- → "Single" quark masses are not observables, and they are observed as running parameters (running mass)
- Running mass is described by RGE:

 μ : renormalization scale $\gamma(\alpha_s(\mu))$: Perturbative function

2. Inferring of running b-quark mass

- · Quarks and gluons appear as jets
- →running quark masses are obtained from hadronic observables Exclusive observables (e.g. three jet rates) have better sensitivity(by a factor of 10 @Z-pole) of quark mass
- · Jet should be defined so that avoid infrared(soft/collinear) divergence → Jet-Clustering algorithm (JADE, DURHAM, CAMBRIDGE...)

$$R_3^f = \frac{\Gamma_{3j}^f(y_c)}{\Gamma^f} : e^+e^- \to f\bar{f}g \to 3\text{-jet xsect } (y_c : \text{resolution parameter from algorithm})$$

$$: \text{Total width for } e^+e^- \to f\bar{f}$$

The b-quark mass at Z-pole has been measured precisely at LEP/SLD $\rightarrow b$ -quark mass at higher energies at the ILC?

Estimate dominant systematic errors at 250GeV ILC and Giga-Z ILC

Measured R_3^{bl} for each level

0.015 0.02 0.025

5. Environment of 250GeV measurement

- Signal event: $e^+e^- \rightarrow q\overline{q} \quad (q = u, d, s, b)$
- ■BKG events:
- 1. Radiative return (w/ <50 GeV ISR γ)
- 2. Di-boson events
- Luminosity: 2ab⁻¹ with two polarizations $(P_{e^-}, P_{e^+}) = (-0.8, +0.3)$ and (+0.8, -0.3)
- · Situation is completely different from LEP's Z-pole measurement

6. Event selection

■ Radiative return cut

and remove invisible γ s

250 GeV $\sin \psi_{acol}$

- ■Di-boson events cut: use Thrust>0.85
- ■Flavor-tagging

Efficiency: 80% (for b), 58% (for uds)

Purity: 98.7%(for *b*), 96.1%(for *uds*)

■ Jet-reconstruction: CAMBRIDGE algorithm w/ $y_c = 0.01$

Flavor-tagging likelihoods

- Used old DBD sample → event generated by LO for massless quarks in WHIZARD
- Mass effects are only implemented in PYTHIA(PS+Hadronization)

 ψ_{acol} : angle of btw 2 jets $\frac{1}{\sin \psi_{acol} + \sin \theta_1 + \sin \theta_2}$ θ_i : polar angle of each jet

Visible γ s are removed by neutral PFO information 200

The mass effects are NOT implemented $\mathbf{n}^{u,d,s}$ CAMBRIDGE — Parton level — Hadron level 7.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 b-likelihood

3. Definition of the Observable

 $^{\circ}$ Consider double-ratio R_3^{bl} as the observable Cancel or reduce EW corrections and systematic uncertainties (hadronization effect)

$$R_3^{bl} = \frac{\Gamma_{3j}^b(y_c)/\Gamma^b}{\Gamma_{3j}^l(y_c)/\Gamma^l} = 1 + \underbrace{\frac{\alpha_s(\mu)}{\pi}a_0(y_c)}_{\text{massive}} + \overline{r}_b(\mu) \left(\underbrace{b_0(\overline{r}_b, y_c)}_{\text{massive}} + \underbrace{\frac{\alpha_s(\mu)}{\pi}b_1(\overline{r}_b, y_c, \mu)}_{\text{NLO correction}} \right) \quad \overline{b}_1 = b_1 + 2b_0 \left(\frac{4}{3} - \log \overline{r}_b + \log \left(\frac{\mu^2}{s} \right) \right)$$

4. Sensitivity of b-quark mass at high energies

- Sensitivity of b-quark mass for R_3^{bl} is given by $\Delta R_3^{bl} \sim \frac{2\left(1-R_3^{bl}\right)}{2}$ If we want $\Delta m_b = 0.4$ GeV, we need to measure R_3^{bl} with a precision of 1% (for Z-pole) and 0.1% (for 250 GeV)
- →The sensitivity at 250 GeV is ~5 times deteriorated
- _ LO calculation ---- NLO calculation
- Running mass, $\mu = 2\sqrt{s}$ Running mass, $\mu = \sqrt{s/2}$

Pole mass, $\mu = \sqrt{s}$

Assumed experimental error

Hadronization $C_{had} =$

correction

7. Assessment of uncertainties

· The mass effects are not implemented in the current MC, but corrections between different levels are worthful:

$$R_3^{bl}\Big|_{parton} = C_{had} \times C_{det} \times R_3^{bl}\Big|_{rece}$$

- Estimate systematic uncertainties from these corrections:
- Hadronization model

LEP's time: 0.2% uncertainty on C_{had} (Compare different hadronization models and tunes)

- → assumed its half thanks for higher energy B-hadrons and more data
- Detector

Propagated flavor-tagging efficiency (0.1-0.5%) and BKG contaminations (O(1%)) to C_{det} through Toy-MC

- Statistical uncertainty is estimated at 2ab-1 H20 scenario
- b-quark mass precision for $R_3^{bl} = 0.996$, $m_b = 2.75$ GeV:

$$\Delta m_b(250) = 0.76(stat.) \pm 0.59(exp.) \pm 0.34(had.) \pm 0.07(theo.)$$
 GeV

· Giga-Z ILC gives better precision thanks for 100times larger statistics, superior flavor-tagging

DELPHI: $\Delta m_b(m_Z) = 0.18(stat.) \pm 0.13(exp.) \pm 0.19(had.) \pm 0.12(theo.)$ GeV ILD: $\Delta m_b(m_7) = 0.02(stat.) \pm 0.02(exp.) \pm 0.09(had.) \pm 0.06(theo.)$ GeV

8. Conclusion and Prospects

- · ILC 250GeV measurement has limited b-quark mass sensitivity, but it will add a new point at never proved energies
- · Giga-Z ILC will provide superior result at Z-pole than LEP and better QCD test

