Discovery of solar neutrinos from the CNO fusion cycle within the Sun by the Borexino experiment

PANIC

Particles and Nuclei International Conference Lisbon - 5-10 September 2021

Davide D'Angelo

for the Borexino collaboration

Università degli Studi di Milano

Istituto Nazionale di Fisica Nucleare

Solar neutrino producion

Nuclear fusion net reaction: $4H \rightarrow He + 2e^{-} + 2v$ •

Who wins this competition?

- It depends on the <u>temperature</u> and <u>elemental abundance</u> of the star
- In the Sun, the pp-chain does 99% of the job
 - CNO solar neutrinos are hard to spot and so far undetected
- The CNO cycle becomes dominat above ~ 1.3 M_{\odot}

The Solar metallicity puzzle

- Helioseismology is a great tool to prove solar models.
- Since 2005: a new 3D analysis of spectroscopic data from photosphere indicates lower values of solar metallicity (LZ) by ~20%.

v flux

• But solar models reproducing these new LZ values **disagree with** helioseismology data.

-	hh	5.98 (1±0.000)	$0.03(1\pm0.003)$	X 10		
	рер	1.44 (1±0.01)	1.46(1±0.009)	x 10 ⁸		
	⁷ Be	4.93 (1±0.06)	4.50 (1±0.06)	x 10 ⁹		
	⁸ B	5.46 (1±0.12)	4.50 (1±0.12)	x 10 ⁶		
	¹³ N	2.78 (1±0.15)	2.04 (1±0.14)	x 10 ⁸		
	¹⁵ O	2.05 (1±0.17)	1.44 (1±0.16)	x 10 ⁸		
0.6 0.8						
xes are the most sensitive to the Sun metallicity						

GS98

(HZ)

E 00 (1+0 006)

Metallicity (Z): abundance of elements other than H, He

cm⁻² s⁻¹

v 1010

AGSS09met

(LZ)

602(1+000E)

LLWI 2019 – Borexino results

D. D'Angelo

Δ

+0.8%

-8.7%

-18%

-27%

-30%

Solar neutrino spectrum

Solar neutrino spectrum

The Borexino detector

Borexino data taking campaign

Solar neutrinos

- ⁷Be: 1st observation + Precise measurement (±5%)
- ▶ *pep*: 1st observation
- ▶ ⁸B: low-threshold measurement
- ► CNO: best upper limit

+ Other studies ...

Borexino data taking campaign

Solar neutrinos	Solar neutrinos	
 ⁷Be: 1st observation + Precise measurement (±5%) <i>pep</i>: 1st observation ⁸B: low-threshold measurement CNO: best upper limit 	 <i>pp</i>: 1st measurement ⁷Be: Seasonal modulation Simultaneous meas. of low-<i>E</i> solar-ν (<i>pp</i>, <i>pep</i>, ⁷Be, CNO limit) ⁸B: improved low-thrs meas. 	
+ Other studies	+ Other studies	

Phase-I and II results

Complete spectroscopy of the pp-chain

Borexino has slight preference for HZ model, but global analyis much less

Fundamental test of the LMA-MSW oscillation mechanism (e.g. see S.K. Agarwalla et al., JHEP 38, 2020 for limits on NSI)

Limited sensitivity to the Sun's metallicity

Borexino data taking campaign

Solar neutrinos	Solar neutrinos	Solar neutrinos
 ⁷Be: 1st observation + Precise measurement (±5%) <i>pep</i>: 1st observation ⁸B: low-threshold measurement CNO: best upper limit 	 <i>pp</i>: 1st measurement ⁷Be: Seasonal modulation Simultaneous meas. of low-<i>E</i> solar-ν (<i>pp</i>, <i>pep</i>, ⁷Be, CNO limit) ⁸B: improved low-thrs meas. 	• The quest for CNO neutrinos
+ Other studies	+ Other studies	

Challenges for the CNO- ν detection

- Borexino spectrum past data selection criteria
 - Including removal of ¹¹C cosmogenic background by Three-Fold Coincidence (arXiv:2106.10973)
- Neutrino signals extracted by multivariate fit
- CNO rate only 3-5 ev/day/100t
- CNO spectral shape almost degenerate with pep and ²¹⁰Bi decays:
 - pep flux can be constrained to SSM predictions witin 1.4%
 - 2. But what about ²¹⁰Bi?

Strategy for ²¹⁰Bi constraint

Measuring ²¹⁰Po could allow to constraint ²¹⁰Bi

If only we had secular exquilibrium!

...

Strategy for ²¹⁰Bi constraint

²¹⁰Pb
$$\xrightarrow{\beta^{-}}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}$ ²¹⁰Po $\xrightarrow{\alpha}$ ²⁰⁶Pb $\xrightarrow{206}$ Pb

- ²¹⁰Po contamination on the inner vessel
- Diffusion is very slow: ~ 10⁻⁹ m²/s
- But we observed seasonal convective currents bringing ²¹⁰Po into the FV

How to prevent convection?

Warm air from room ventilation (~20°C)

BOREXINO Water Tank

Heat sink 6°C (Hall C floor) stable vertical temperature gradient

fluid stratification

- 1. Insulation of the water tank (2015-16)
- 2. Active temperature control of the upper dome (2017)
- Active temperature control of the Hall ventilation inlet (2019)

Mitglied der Helmholtz-Gemeinschaft

Temperature stabilization

Effects of temperature control on ²¹⁰Po

Verified by a complete fluido-dynamics modelling. V. di Marcello et al., NIM A 964 (2020)

²¹⁰Bi constraints from *Low Polonium Field*

~ 20t "bubble" of scintillator, located ~80 cm above the center We measure the ²¹⁰PO rate in the "bubble":

- 1. is this all supported by ²¹⁰Bi?
- 2. or is it partly due to residual convection?

Therefore we set only an upper limit on ²¹⁰Bi

Good! It implies a lower limit on CNO

CNO fit result

1

- Multivariate Monte Carlo fit:
 - ¹¹C-subtracted energy spectrum
 - ¹¹C-enhanced energy spectrum
 - Radial profile
- *pep* rate: gaussian penalty at SSM prediction
- ²¹⁰Bi rate: semi-gaussian penalty at our upper limit
- Counting analysis in ROI (yellow band) for consistency check

Systematics from:

- Fit configuration (binning, range)
- Spectral shapes (¹¹C, ²¹⁰Bi)
- Detector response (energy scale, non-uniformity, non-linearity)

- No CNO hypothesis excluded at 5.0 σ (99% C.L.)
 - HZ (LZ) model compatible at 0.5 (1.3) σ
- Including other pp-chain fluxes from Borexino: LZ disfavoured at 2.1 σ

the Sun with 5.0 σ significance

and the complete solar neutrino spectroscopy with a single experiment

European Physical Society PRIZE

The 2021 Giuseppe and Vanna Cocconi Prize for an outstanding contribution to Particle Astrophysics and Cosmology is awarded to the Borexino Collaboration

for their ground-breaking observation of solar neutrinos from the pp chain and CNO cycle that provided unique and comprehensive tests of the Sun as a nuclear fusion engine.

Backup

²¹⁰Bi spatial uniformity

14

16