Results of the STEREO Experiment

PANIC 2021 09-2021 Mathieu VIALAT On behalf of the STEREO collaboration

NEUTRONS FOR SOCIETY

04/09/2021

The Reactor Antineutrino Anomaly (RAA)

2011: **Re-evaluation of the predicted flux of antineutrinos coming from a reactor** (<u>PRC 83:054615</u>)

 \rightarrow ~6% deficit measured compared to the prediction: **Reactor Antineutrino Anomaly** (RAA) (PRD 83:073006)

Spectral distortion

Nature Physics 16, 558-564 (2020)

- « Bump » around 5 MeV compared to prediction observed by several LEU experiments
- $ightarrow \approx 10\%$ amplitude distortion
- Can not explain the total deficit
- Linked to the fuel composition ?

How to test the 2 anomalies:

- 1. Sterile neutrino hypothesis
 - Prediction-independent comparison of neutrino spectra measured at different distances from the reactor core
- 2. Spectral distortion
 - Accurate neutrino spectrum measurement from a reactor highly enriched in ²³⁵U

Experimental site

Experimental site (France, Grenoble, ILL):

Research Reactor highly enriched in ²³⁵U (99.7% of neutrinos flux)

- ➢ Nominal power ~58 MW_{th}
- Compact core (Ø40 x 80 cm)
- Short baseline ~10 m

Background sources:

γ and neutrons coming from neighboring experiments

Surface level experiment exposedto cosmic rays

STEREO data taking

November 2016 to November 2020

➤ ON and OFF data taking ⇒ control of the cosmogenic background

- Oscillation analysis: entire dataset (Phase-I+II+III) with 334(543) days ON (OFF)
- Shape analysis: Phase-II and III data with 273(519) days ON(OFF)

04/09/2021

IBD events selection

> Detection by Inverse Beta Decay (IBD) process

Type of cuts	Cut	
Energy	1.625 MeV < E(prompt) < 8.125 MeV 4.5 MeV < E(delayed) < 10.0 MeV	
Coïncidence	2μs < ΔT < 70μs ΔX < 600 mm	
Topology	E(neighbour cells) < 1 MeV (1.1 in Phase-III) E(other cells) < 0.4 MeV E(delayed) at least 1 MeV in target	
Muon rejection	Asymetry of light at PMTs of vertex cell < 0.5 No muon in veto 100µs before prompt No muon in detector 200µs before prompt No events with E>1.5MeV 100µs before prompt and after delayed	

- **1.** Prompt signal: $E_e \approx E_v 0.782$ MeV
- **2.** Delayed signal: $\Sigma E_{v} \approx 8 \text{ MeV}$

Cuts used to select IBD events and optimize signal/background at low systematics

Reconstructed energy

Precise energy reconstruction is necessary for oscillation and spectrum shape analysis

Energy scale accuracy tested with a global fit of:

- 1. Calibration sources at different positions in the detector
- **2.** ¹²B spectrum with $Q_{\beta} = 13.4$ MeV

Uncertainty due to time stability ≈0.3%

Data/MC residuals inferior to ±1%

Two different versions of calibration and Monte Carlo used for Phase-II and Phase-III

Time stability of energy from variations of the n-H peak position

Signal extraction from PSD distribution

Discriminate neutrino signal from background using the Pulse Shape Discrimination (PSD)

 \blacktriangleright PSD = Q_{tail} / Q_{tot}

• Lower PSD for electron than for proton recoils

Background PSD model from reactor OFF data

Simultaneous fit of ON and OFF data performed for each energy bin and cell

$$ON_{l,i,p} = a_{l,i}m_{l,i,p}^{corr,OFF} + f^{acc,ON}m_{l,i,p}^{acc,ON} + G_p^{\nu}(A_{l,i}, \mu_{l,i}, \sigma_{l,i}^2)$$

 $OFF_{l,i,p} = m_{l,i,p}^{corr,OFF} + f^{acc,OFF} m_{l,i,p}^{acc,OFF}$

 Neutrinos represented by a gaussian function
 a_{l,i}: normalisation parameter between ON and OFF distributions

Phys. Rev. D 102, 052002 (2020)

04/09/2021

Phase-II and III compatibility

> Phase-II and III neutrino spectra are compatible within the error bars:

Only stat: **χ²/ndf = 18.5 / 21** Stat + syst: **χ²/ndf = 17.9 / 21**

STEREO shape analysis: methods

Provide a reference ²³⁵U spectrum in antineutrino energy to be compared with other experiments and predictions

Method: Unfold the measured energy spectrum D in antineutrino energy spectrum Φ through the detector response R

$$\chi^{2}(\Phi) = (\mathbf{R}(\alpha)\Phi - D)^{T}V_{stat}^{-1}(\mathbf{R}(\alpha)\Phi - D) + |\alpha| + r \cdot \Lambda(\Phi)$$

> α parameterizes the systematic uncertainties > $r \cdot \Lambda(\Phi)$: regularization term to avoid too high bin-to-bin fluctuations

•
$$\Lambda(\Phi) = \sum_{i} \left(\frac{\Phi_{i+1}}{\Phi_{i+1}^{0}} - \frac{\Phi_{i}}{\Phi_{i}^{0}} \right)^{2}$$

with Φ_{θ} the prior shape (Huber model

• *r* tuned to limit prior dependence

STEREO shape analysis: results

Spectrum of the two phases jointly unfolded:

Models: HM: <u>PRC 84, 024617 (</u>2011) SM: <u>PRL 123, 022502 (</u>2019)

Comparison with Huber (norm free):

χ²/ndf = 40.5/17

Best fit bump:

χ²/ndf = 11.6/14

 $A = 0.107 \pm 0.021$

μ = 5.39 ± 0.13 MeV

σ = 0.585 ± 0.157 MeV

Confirms the events excess in the 5-6 MeV range for a pure ²³⁵U spectrum

Oscillation analysis: Method

Test the hypothesis of a new sterile neutrino causing the RAA

Method: Analyse relative variations of the spectrum shape between cells, to be independent from the prediction shape and rate $\mu:[\sin^2(2\theta_{ee});\Delta m^2_{14}]$

> Data fitted with the formula:

$$\chi^{2}(\boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\varphi}) = \sum_{l}^{N_{Cells}} \sum_{i}^{N_{Bins}} \left(\frac{D_{l,i} - \varphi_{i}M_{l,i}(\boldsymbol{\mu},\boldsymbol{\alpha})}{\sigma_{l,i}}\right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{NormU}}{\sigma_{l}^{NormU}}\right)^{2}$$

$$+\left(\frac{\alpha^{EscaleC}}{\sigma^{EscaleC}}\right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{EscaleU}}{\sigma_{l}^{EscaleU}}\right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{ReacBkg}}{1}\right)^{2}$$

Where α parameterizes the systematic effects M_{I} : Simulated spectra

Preliminary	Uncertainty	
Туре	Phase-II	Phase-III
Uncorrelated normalizationCell volumeNeutron efficiency correction	0.83% 1.13%	0.83% 1.13%
Uncorrelated energy scaleMn Anchor pointCell-to-cell deviations	0.2% 1.0%	0.3% 1.0%
Correlated energy scale Time stability 	0.3%	0.3%

 $M_{l,i}(\boldsymbol{\mu}, \boldsymbol{\alpha}) = T_{l,i}(\boldsymbol{\mu}) * (1 + R_{l,i} * \alpha_l^{ReacBkg} + \alpha_l^{NormU} + S_{l,i}^{Escale}(\boldsymbol{\mu}) * (\alpha^{EscaleC} + \alpha_l^{EscaleU}))$ D₁: Data spectra

- T_I: Huber-Mueller simulated spectra
- *q*: Free parameters common to all cells (removes prediction dependence)
- Combination of the 3 phases:

$$\chi^2_{PI+PII+PIII} = \chi^2_{PI}(\boldsymbol{\mu}, \boldsymbol{\varphi}, \boldsymbol{\alpha_{PI}}) + \chi^2_{PII}(\boldsymbol{\mu}, \boldsymbol{\varphi}, \boldsymbol{\alpha_{PII}}) + \chi^2_{PIII}(\boldsymbol{\mu}, \boldsymbol{\varphi}, \boldsymbol{\alpha_{PIII}})$$

$\Delta m^2_{41}(eV^2)$

PANIC2021

No-oscillation hypothesis p-value = 0.17

RAA best fit rejected at more than 4σ

Oscillation analysis: Results

New Preliminary results obtained with full dataset (Phase-I+II+III)

CLs method used

(not rejected)

• $\Delta \chi^2$ distributions estimated with pseudo-experiments

Conclusion and perspectives

STEREO preliminary results including Phase-III:

- > Oscillation analysis:
 - Exclusion of a great part of the RAA acceptance area
 - \bullet RAA best fit excluded at more than 4σ
- > Pure ²³⁵U spectrum shape analysis:
 - Confirmation of a significant « Bump » (A≈10%) around 5 MeV, similar to the event excess reported by LEU experiments
 - Joint analysis with PROSPECT experiment (<u>arXiv:2107.03371</u>) could be improved by the addition of Phase-III data

Spokesperson: David Lhuillier (CEA)

Contact: david.lhuillier@cea.fr

Website: www.stereo-experiment.org

Photo: S. Schoppmann

Back-up

STEREO shape analysis: separated phases

Phase-III

Unfolded spectra of the two phases separately:

Phase-II

Event rate [v/day] Event rate [v/day] HM pure U5 60 F IM pure U5 SM pure U5 SM pure U5 50 40 STEREO phase-II STEREO phase-III Correlation 30 Correlation 20 20 10 10 Ratio to HM Ratio to HM 1.20.9 0.8 0. Best-fit bump Best-fit bump 0.70.7 Local p-value (w.r.t. HM) of 01 01 p-value (w.r.t. HM) 10 10 10⁻² 10-2 keV/ bin 10 3.5 6.5 5.5 6 .5 6 6.5 7 Antineutrino energy [MeV] 4.5 Antineutrino energy [MeV]

Significant excess of events observed around 5.4 MeV w.r.t Huber for the two phases

Observed excesses are compatible

04/09/2021

PANIC2021

Oscillation analysis: norm difference

> Possible systematic **difference of normalisation** between phases:

- Phase-I: no precise information on the norm \Rightarrow completely free term A added to the formula to adjust the normalisation difference w.r.t Phase-III
- Phase-II: normalisation precisely determined ⇒ constrained term B added as a systematic error

➢ Fit formula:

$$\chi^{2}(\boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\varphi}) = \sum_{l}^{N_{Cells}} \sum_{i}^{N_{Bins}} \left(\frac{D_{l,i} - A\varphi_{i}M_{l,i}(\boldsymbol{\mu},\boldsymbol{\alpha})}{\sigma_{l,i}}\right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{NormU}}{\sigma_{l}^{NormU}}\right)^{2} + \left(\frac{\alpha_{l}^{EscaleC}}{\sigma_{l}^{EscaleC}}\right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{EscaleU}}{\sigma_{l}^{EscaleU}}\right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{E$$

Simulated spectra formula:

$$M_{l,i}(\boldsymbol{\mu},\boldsymbol{\alpha}) = T_{l,i}(\boldsymbol{\mu}) * (1 + R_{l,i} * \alpha_l^{ReacBkg} + \alpha_l^{NormU} + S_{l,i}^{Escale}(\boldsymbol{\mu}) * (\alpha^{EscaleC} + \alpha_l^{EscaleU}) + B)$$