

Neutrino Oscillation Results from the NOvA Experiment

Erica Smith for the NOvA Collaboration

Indiana University

September 5, 2021

Neutrino Oscillations

Neutrinos are created in one flavor but can be detected in another:

Three-Flavor Oscillations

The mixing matrix (PMNS matrix) can be written in terms of 3 angles and 1 phase. Usually factorized into components directly related to the experiments:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad c_{ij} = \cos\theta_{ij}$$

• The (12) sector: Solar and Reactor,

L/E 15,000 km/GeV

- The (23) sector: Atmospheric and Accelerator, L/E 500 km/GeV
- The (13) sector: Reactor and Accelerator, L/E 500 km/GeV ۲ $\sin^2 \theta_{23} = 0.545 \pm 0.021$ $\sin^2 \theta_{13} = 0.0218 \pm 0.0007$

 $\delta_{CP} = 1.37^{+0.18}$

 $\sin^2 \theta_{12} = 0.307 \pm 0.013$

PDG Prog. Theor. Exp. Phys 2020 083C01 (2020)

Mass Squared Differences and Hierarchy

Neutrino oscillation experiments can access the mass squared differences:

 $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ $|\Delta m_{32}^2| = (2.453 \pm 0.034) \times 10^{-3} \text{ eV}^2$

PDG Prog. Theor. Exp. Phys 2020 083C01 (2020)

PMNS Physics Goals for Long-Baseline Experiments

- What is the neutrino mass hierarchy?
- Is there a v_{μ} - v_{τ} symmetry?
 - Is the large mixing angle maximal, and if not, what is the octant?
- Is CP violated in the lepton sector?

Vacuum and no CP violation: neutrinos and antineutrinos are the same

CP-violation through δ creates opposite effects in neutrinos and antineutrinos

CP-violation through δ creates opposite effects in neutrinos and antineutrinos

Matter effects also introduce opposite neutrino-antineutrino effects.

The octant creates the same effect in neutrinos and antineutrinos.

NOvA

- NOvA is a long-baseline neutrino oscillation experiment
- Study neutrinos from the NuMI beam at Fermilab
- Two functionally equivalent detectors:
 - Far Detector (FD) 14 kton; on the surface
 - Near Detector (ND)
 0.3 kton; underground
- Off axis position provides narrow band beam that peaks around 2 GeV

NOVC

NuMI Antineutrino beam

 $\mathcal{N}O\mathcal{V}$

Erica Smith

Flux 1-5 GeV

NOvA Detectors

- Fine-grained, low-Z, highly-active tracking calorimeters ۲
- Cells are PVC, filled with liquid scintillator •
- Read out via wavelength shifting fiber to APD •
- <u>Orthogonal layers of cells</u> \rightarrow top and side view for each event

Light

Near Detector Event Display

(colors show hit times)

Far Detector Event Display – 550 µs

(colors show charge)

Far Detector Event Display – 10 µs

(colors show charge)

Event Identification

- Identify flavor with convolutional neural network
- Before CNN:
 - Need to be contained
 - v_{μ} CC needs a well reconstructed muon track
 - First pass of cosmic rejection
- Performance relative to preselection
 - v_{μ} : ~90% efficient, 99% bkg rejection
 - v_e : ~80% efficient, 80% bkg rejection

Muon Neutrinos at the ND

- Used to predict both v_{μ} and v_{e} spectra at the FD
- Large error band shows the effect of flux and cross-section uncertainties in one detector

Electron Neutrinos at the ND

- ND v_e -like sample has no appearance all background
- This sample is used to predict the background at the FD
- Largest background is the irreducible beam v_e/\bar{v}_e

Muon Neutrinos at the FD

Electron Neutrinos at the FD

Electron Neutrinos at the FD

NOVA

- We see no strong asymmetry in the rates of v_e and \bar{v}_e
- Slight preference for Normal Hierarchy, Upper Octant
- Exclude IH $\delta = \pi/2$ at >3 σ
- Disfavor NH $\delta = 3\pi/2$ at $\sim 2\sigma$

Future

- Will run through 2026 with equal neutrino/antineutrino beam
- Proposed accelerator improvements and test beam program enhance NOvA's reach
- Improvements in simulation will improve analysis robustness

Summary

- NOvA observes >4σ evidence of electron antineutrino appearance.
- We exclude $\delta = \pi/2$ in the Inverted Hierarchy at >3 σ .
- We see no strong asymmetry between rates of v_e and \overline{v}_e .
- By 2025 we could see >3σ sensitivity to the mass hierarchy.

See our recent paper for details I couldn't cover here!

Backups

Current Long Baseline Experiments

Future Long Baseline Experiments

Event Identification

Erica Smith

- We use a convolutional neural network (CNN) called CVN
 - Technique borrowed from computer vision community
 - Learns topological "features"

INDIANA UNIVERSITY

• Mapped onto output categories

Neutrino Energy

start with reconstructed ND

convert from reconstructed to true energy

this gives you the true ND energy spectrum

the Far/Near ratio corrects for differences between detectors e.g. geometry, acceptance

- Calibration and energy scale are two of the largest systematic uncertainties
- Will be reduced with the test beam program
- Already took some beam data, more to come after November

Reach – Maximal Mixing Rejection

Reach - δ_{CP}

