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Neutrino Oscillations

Neutrinos are created in one flavor but can be detected in another:

Each flavor is a superposition of mass states:
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Three-Flavor Oscillations

The mixing matrix (PMNS matrix) can be written in terms of 3 angles and 1 phase. 
Usually factorized into components directly related to the experiments:

• The (12) sector: Solar and Reactor,                         L/E 15,000 km/GeV 

• The (23) sector: Atmospheric and Accelerator,     L/E      500 km/GeV

• The (13) sector: Reactor and Accelerator, L/E      500 km/GeV

𝑐𝑖𝑗 = cos 𝜃𝑖𝑗
𝑠𝑖𝑗 = sin𝜃𝑖𝑗

PDG Prog. Theor. Exp. Phys 2020 083C01 (2020)
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sin2 θ23 = 0.545±0.021 sin2 θ13 = 0.0218±0.0007 sin2 θ12 = 0.307±0.013

δCP = 1.37+0.18
-0.16 π
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Mass Squared Differences and Hierarchy

Neutrino oscillation experiments can access the mass squared differences:
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• By convention we denote the mass 
eigenstate with the largest fraction 
of νe as ν1

• We haven’t determined which mass 
eigenstate is the lightest →
“hierarchy”

• Normal: ν1 is the lightest

• Inverted: ν3 is the lightest

Δm2
21 = (7.53 ± 0.18) x 10-5 eV2 |Δm2

32| = (2.453 ± 0.034) x 10-3 eV2

PDG Prog. Theor. Exp. Phys 2020 083C01 (2020)
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PMNS Physics Goals for Long-Baseline Experiments

• What is the neutrino mass 
hierarchy?

• Is there a νμ-ντ symmetry? 

• Is the large mixing angle 
maximal, and if not, 
what is the octant?

• Is CP violated in the 
lepton sector?
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Image credit: Symmetry Magazine



INDIANA UNIVERSITY

Neutrino

A
n

ti
n

e
u

tr
in

o

Vacuum and no CP 
violation: neutrinos and 

antineutrinos are the 
same

Electron Neutrino vs Antineutrino Appearance
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introduce opposite 
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effects.

Electron Neutrino vs Antineutrino Appearance
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The octant creates the 
same effect in neutrinos 

and antineutrinos.
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NOvA

• NOvA is a long-baseline neutrino 
oscillation experiment

• Study neutrinos from the NuMI beam 
at Fermilab

• Two functionally equivalent detectors: 

• Far Detector    (FD)   
14 kton; on the surface

• Near Detector (ND) 
0.3 kton; underground

• Off axis position provides narrow
band beam that peaks around 2 GeV
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Flux 1-5 GeV

95% νμ

4% ν̅μ

1% νe

Exposure (POT)
𝜈: 13.6 x 1020

ҧ𝜈: 12.5 x 1020
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Flux 1-5 GeV

6% νμ

93% νμ̅

1% νe

Exposure (POT)
𝜈: 13.6 x 1020

ҧ𝜈: 12.5 x 1020
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NOvA Detectors

• Detectors are optimized for electron showers

• Fine-grained, low-Z, highly-active tracking calorimeters

• Cells are PVC, filled with liquid scintillator

• Read out via wavelength shifting fiber to APD

• Orthogonal layers of cells → top and side view for each event
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Near Detector Event Display

Beam

(colors show hit times) 



Far Detector Event Display – 550 μs

Beam

(colors show charge) 



Far Detector Event Display – 10 μs

Beam

(colors show charge) 
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Event Identification
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• Identify flavor with convolutional neural 
network

• Before CNN:

• Need to be contained

• 𝜈𝜇CC needs a well reconstructed muon track

• First pass of cosmic rejection

• Performance relative to preselection

• 𝜈𝜇 : ~90% efficient, 99% bkg rejection

• 𝜈𝑒 : ~80% efficient, 80% bkg rejection
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Muon Neutrinos at the ND
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• Used to predict both 𝜈𝜇 and 𝜈𝑒 spectra at the FD

• Large error band shows the effect of flux and cross-section uncertainties in one detector

𝜈𝜇 ҧ𝜈𝜇
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Electron Neutrinos at the ND

• ND 𝜈𝑒-like sample has no appearance – all background

• This sample is used to predict the background at the FD

• Largest background is the irreducible beam 𝜈𝑒/ ҧ𝜈𝑒

20Erica Smith

𝜈𝑒 ҧ𝜈𝑒
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Muon Neutrinos at the FD
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𝜈𝜇 ҧ𝜈𝜇

211 events, 8.2 background 105 events, 2.1 background
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Electron Neutrinos at the FD
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𝜈𝑒 ҧ𝜈𝑒
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Electron Neutrinos at the FD
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𝜈𝑒 ҧ𝜈𝑒

Total Observed 82

Total Prediction 85.8

Wrong-sign 1.0

Beam Bkgd. 22.7

Cosmic Bkgd. 3.1

Total Bkgd. 26.8

Total Observed 33

Total Prediction 33.2

Wrong-sign 2.3

Beam Bkgd. 10.2

Cosmic Bkgd. 1.6

Total Bkgd. 14.0

>4σ evidence of νe̅
appearance
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Consistent with other long-baseline 
and atmospheric experiments.
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Best Fit

Δm2
32 = (2.41±0.07)×10-3 eV2

sin2θ23 = 0.57+0.04
-0.03
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• We see no strong asymmetry in the rates of 𝜈𝑒 and ҧ𝜈𝑒

• Slight preference for Normal Hierarchy, Upper Octant

• Exclude IH δ = π/2 at >3σ

• Disfavor NH δ = 3π/2 at ~2σ
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Future

• Will run through 2026 with equal neutrino/antineutrino beam

• Proposed accelerator improvements and test beam program enhance NOvA’s reach

• Improvements in simulation will improve analysis robustness
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Summary

• NOvA observes >4σ
evidence of electron 
antineutrino appearance.

• We exclude δ = π/2 in the 
Inverted Hierarchy at >3σ.

• We see no strong 
asymmetry between rates 
of 𝜈𝑒 and ҧ𝜈𝑒. 

• By 2025 we could see >3σ
sensitivity to the mass 
hierarchy. 
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See our recent paper for details I couldn’t cover here!

https://arxiv.org/abs/2108.08219
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Current Long Baseline Experiments

NOvA: L=810 km, E=2.0 GeV
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Future Long Baseline Experiments

DUNE: L=1300 km, E=3.2 GeV
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Event Identification
Input Image

νe

νμ

ντ

NC

Cosmic

Learned variations on the original 
image Classifier

(…)
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• We use a convolutional neural network (CNN) called CVN

• Technique borrowed from computer vision community

• Learns topological “features”

• Mapped onto output categories

Effective exposure increase of 30% for νe selection (JINST 11, P09001)

https://doi.org/10.1088/1748-0221/11/09/P09001
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Neutrino Energy

32Erica Smith

𝜈𝜇CC 𝜈𝑒CC

Muon energy calculated 
by length, ~4% resolution

EHAD from calorimetry, 
~30% resolution EEM from calorimetry, 

~10% resolution
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Extrapolating from Near to Far Detector
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start with reconstructed ND 
energy spectrum
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Extrapolating from Near to Far Detector
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convert from reconstructed to true energy
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Extrapolating from Near to Far Detector
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this gives you the true ND energy spectrum
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Extrapolating from Near to Far Detector
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the Far/Near ratio corrects for differences between detectors e.g. geometry, acceptance 
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Extrapolating from Near to Far Detector
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apply survival probability
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Extrapolating from Near to Far Detector
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true energy spectrum at the FD
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Extrapolating from Near to Far Detector
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convert back to reconstructed space
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Extrapolating from Near to Far Detector
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predicted FD spectrum
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Extrapolating from Near to Far Detector
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changes for 𝜈𝑒: different F/N ratio, oscillation probability
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Best Fit

Δm2
32 = (2.41±0.07)×10-3 eV2

sin2θ23 = 0.57+0.04
-0.03
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Best Fit

Δm2 = (2.48+0.11
-0.06)×10-3 eV2

sin2θ23 = 0.56+0.04
-0.03

δCP = 0.84π
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Test Beam

• Calibration and energy scale are two of the largest systematic uncertainties

• Will be reduced with the test beam program

• Already took some beam data, more to come after November
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Asymmetry
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Reach – Maximal Mixing Rejection
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Reach - δCP
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