Final results of Gerda on the search for neutrinoless double- β decay

L. Pertoldi <luigi.pertoldi@tum.de> PANIC 2021 • 8 Sep 2021

TU München, INFN Padova

$$(A_1 \neq) \longmapsto (A_1 \neq 2) + 2e^- + 2\overline{A_e}$$

Quite a peculiar and interesting process¹

- $0\nu\beta\beta$ observation \Rightarrow Majorana neutrino and Lepton Number Violation
- Lepton number \leftrightarrow Barion number \mapsto new physics, baryogenesis?

Light neutrino mass mechanism

The (Majorana) neutrino that mediates $0\nu\beta\beta$ is the one that oscillates and the Standard Model is an effective theory (seesaw mechanism)

(A, z)

$$(T_{1/2}^{0v})^{-1} = G^{0v} |M^{0v}|^2 (m_{\beta\beta})^2$$
 Majorana effective mass

see also M. Lindner's talk

¹100+ papers per year with " $0\nu\beta\beta$ " in the title [INSPIRE-HEP statistics]

[Schechter & Valle 1980]

All experiments measure the total energy of the two emitted electrons

 \mapsto necessary and sufficient for discovery

High-Purity Germanium detectors enriched in ⁷⁶Ge

- source = detector \mapsto high efficiency
- pure \mapsto low intrinsic background 99,9999% Ge (6N)
- Ge crystal \mapsto outstanding energy resolution 0.1% @ Q_{pp} (FwHM)
- solid-state TPC → topological discrimination Pulse shape Amaly is

GERMANIUM DETECTOR ARRAY AT LNGS - 3500 m.w.e. -

- Hybrid LAr light collection system: WLS fibers / SiPMs / PMTs
- μ-veto: water Cherenkov, scintillating panels μ[EPJC 76 (2016)298]
- Ultra radio-pure materials, small passive mass, deep underground

PHASE II DATA ENERGY SPECTRUM BEFORE HIGH-LEVEL CUTS

- Data taken from Dec 2015 to Nov 2019 (~90% duty cycle, including upgrade works)
- Energy resolution: ~ 0.1% FWHM at Q_{BB} HEur. Phys. J. C 81 (2021) 8, 682
- 103.7 kg yr of exposure selected for analysis, largest ever collected with ^{enr}Ge

PHASE II DATA MODELING J. HIGH ENERG. PHYS. 03 (2020) 139

- Bayesian multivariate fit of Monte Carlo predictions (with screening measurements as priors)
- $Q_{\beta\beta}$ dominated by β from ⁴²K (from ⁴²Ar in LAr), α from ²¹⁰Po, γ from ²²⁸Th and ²³⁸U chains
- Results are input to several physics analyses and inform future experiments (LEGEND.)

Final results of GERDA on the search for neutrinoless double-β decay • L. Pertoldi • 8 Sep 2021

SIGNAL AND BACKGROUND DISCRIMINATION TECHNIQUES

Combined $0\nu\beta\beta$ detection efficiency between 45–65% depending on the detector type

Final results of GERDA on the search for neutrinoless double-β decay • L. Pertoldi • 8 Sep 2021

LAR VETO CUT

- Anti-coincidence between HPGe trigger and SiPM/PMT data (≥ 0.3 p.e. in a 5 µs window)
- $0\nu\beta\beta$ signal efficiency > 97% (random coincidences) ${}^{39}A_{R}$, S_{iPM} dark maine
- Publication on Monte Carlo modeling <code>juin preparation</code>

- Point-contact detectors: two-sided univariate A/E cut [] JINST 4 (2009) P10007
- 228 Th calibration data as turning sample Coaxial detectors: artificial neural network and risetime cut [] EPJC 73 (2013) 10, 2583
- OvBB signal efficiency: 90% (70% for coaxials)

THE DATA AFTER ANALYSIS CUTS

~ 0.3 counts per FWHM in full exponente!

- Extremely low event rate at $Q_{\beta\beta}$ of $\sim 5 \cdot 10^{-4}$ cts / (keV kg yr) \mapsto quasi-background-free
- Few events at $Q_{BB} \mapsto$ "simple" background-model-free analysis
- Nearly pure 2vββ spectrum

After analysis cuts

• $\langle m_{\beta\beta} \rangle < 79-180 \text{ meV}$

2400 2600 Counts / (keV kg yr) Background best fit and 68% C.L. interval 90% C.L. $T_{1/2}$ lower limit (1.8 × 10²⁶ yr) -lines " n nimo 10^{-3} unlinned spectrum 10^{-4} 1950 2000 2050 2100 2150 Energy (keV)

- Getting closer to the inverted ordering region, paving the way to LEGEND.
- Interplay with cosmology (Σ) and direct measurements (m_{β}) KATRIN: $m_{\beta} < 0.8 \text{ eV}$

Planck + BAO: S < 0.12 - 0.537 eV

Final results of GERDA on the search for neutrinoless double-β decay • L. Pertoldi • 8 Sep 2021

The Gerda scientific program: not just $0v\beta\beta!$

- · Impressive technological progress and scientific production
- · A new exciting era begins now with LEGEND see S. Schönert's balk !

https://legend-exp.org

LEGEND

GERDA /

EGEND-1000

"...an era in which a discovery could come at any time!"

LEGEND-200

- 200 kg of ^{enr}Ge (×5 yr), in GERDA cryostat
- Funded, under construction
- $2 \cdot 10^{-4}$ cts / (keV kg yr) \mapsto > 10^{27} yr sensitivity

LEGEND-1000 arXiv 2107.11462

- 1 ton of ^{enr}Ge (×10 yr), awaiting funding
- < 10^{-5} cts / (keV kg yr) \mapsto > 10^{28} yr sensitivity
- Cover $\langle m_{\beta\beta} \rangle$ inverted ordering region

LEGEND @ PANIC

W. Pettus (overview), CJ Barton (cosmogenics), M. Harańczyk (LAr purification)