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Measure counts 
Use an interaction model to deconvolute the neutrino flux 

How to Extract Neutrino Physics 2

Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with an oscillated far-detector

incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with an inferred incident-energy spectrum that hopefully

matches the actual one.

resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g., nucleon (proton or neutron) mo-
tion, meson currents, nucleon reinteraction). While ex-
perimental e↵ects are generally understood and can be
minimized using improved detectors, nuclear e↵ects are
irreducible and must be accounted for using theoretical
models, typically implemented in neutrino event genera-
tors.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). The
models currently used have many free parameters that
are poorly constrained and are “tuned” by each neutrino
experiment. Current oscillation experiments report sig-
nificant systematic uncertainties due to these interaction
models [7–10] and simulations show that energy recon-
struction errors can lead to significant biases in extract-
ing �CP at DUNE [11]. There is a robust theoretical
e↵ort to improve these models [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of
�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is calculated

from hadronic reaction rates [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Thus, for precision measurements using
a broad-energy neutrino beam, the degree to which the
near-detector data alone can constrain models is unclear,
since the neutrino flux can be very di↵erent at the far
detector due to oscillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models widely used by neutrino os-
cillation analyses. Both types of leptons, e and ⌫, in-
teract similarly with nuclei. Both particles interact with
nuclei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reaction
e↵ects are similar. See Methods for details. Therefore,
any model of neutrino interactions (vector+axial-vector)
should also be able to reproduce electron (vector) inter-
actions. The data presented here can therefore test and
constrain neutrino-nucleus interaction models to be used
in analysis of neutrino oscillation measurements. While
previous work has compared these interaction models
with inclusive electron scattering, (e, e0), [18, 19] this is
the first comparison of semi-exclusive electron scattering
data (data with one or more detected hadrons) with these

Measure counts
Use an interaction model to deconvolute the ! Flux.
Nα(Erec,L)= Φα∫

i
∑ (E,L)σ i(E) fσi

(E,Erec)dE
measured ! Flux
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Measuring Neutrino Oscillations 
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Interaction Uncertainty will limit future Oscillation Experiment

T2K

NOvA

Alex Himmel, Neutrino 2020
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Neutrino-Nucleus Scattering is complicated

5

Initial nuclear state
• Nucleon motion
• Long range correlations
• Short range correlations
• Nucleon removal energies
• Form factors 

Interactions

Final state interactions
• Reinteractions of 

outgoing particles
• Knockout of new 

particles

Credit: Noemi Rocco 

Quasielastic Meson exchange current Resonance Deep Inelastic scattering
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Why Electron Scattering?

• e & 𝜈 interact similarly
- Single boson exchange
- CC Weak current [vector plus axial]

• 𝑗!± = $𝑢 #$%!
& &

(𝛾! − 𝛾!𝛾')𝑢

- EM current [vector] 
• 𝑗!() = $𝑢 𝛾!𝑢

• Many nuclear effects identical 
• Final State Interaction (FSI)
• Initial state, reaction mechanism, ...
• e beam energy is known 
• à can test energy reconstruction
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- For Quasi-elastic process we use a free nucleon CCQE formalism to determine
the cross section

- The vector form factor F1 and F2 are known from electron-nucleon scattering
- The DIS term of the inelastic differential cross section is expressed in terms of 

the differential cross section                                                                              
predicted by Boded-Yang model,                                                                             
which has been tuned to lepton                                                                                               
scattering data                                                                                                   
https://arxiv.org/pdf/hep-ex/0210024.pdf

Why Electron Scattering?
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• The Quasi-elastic process gives the largest contribution for the signal in many 
oscillation experiments

• We use a free nucleon CCQE formalism                                                                           
to determine the cross section

• Depend on the form factors F1, F2 and the axial                                                                       
form factor FA
• The vector form factors F1, F2 are known from                                                         

electron-nucleon scattering 
• The axial form factor is described using an ansatz

• FA(0) is constrained from neutron beta decay and MA is the axial mass

�7

Quasi-Elastic Scattering (CCQE)

• The Quasi-elastic process gives the largest contribution for the signal in many oscillation 
experiments

• We use a free nucleon CCQE formalism

where s and u are the Mandelstam variables.  A, B and C depend on the form factors F1, F2 

and the axial form factor FA

• The F1, F2 are know from electron-nucleon scattering 
• The dipole ansatz is used to describe the axial form factor

• FA(0) is constrained from neutron beta decay and MA is the axial mass

Nucleon Axial Form Factor Using z-Expansion and Deuterium!
A. S. Meyer1,2,M. Betancourt2, R. Gran3, R. J. Hill1,4,5!

The University of Chicago1,Fermilab2, University of Minnesota Duluth3,TRIUMF4 and Perimeter5!

Background Subtraction

Fitting the Deuterium Data Using the 
z-Expansion

Introduction

 
Axial Form Factor from z-Expansion

•We perform a joint, shape-only log likelihood fit to the ANL 1982, BNL 1981 and 
FNAL 1983  deuterium quasi elastic differential cross section data using the z-
Expansion axial form factor.!
•Each data set is allowed to independently float a normalization. !

!

Comparing Dipole and z-Expansion with 
MINERvA Data

Extracted mA from Deuterium 
Experiments

Summary

Lightning Introduction of z-Expansion
z-Expansion gives a model-independent description of the axial form factor

• Conformal mapping to bring Q2
! z for |z| < 1:

FA(z) =
1X

k

akz
k

• Motivated by analyticity arguments

• Coe�cients shown to be bounded, decreasing

• Provides a prescription for introducing more parameters as data improves

• Allows quantification of systematic errors

• z-Expansion in incubator project for GENIE, target release v2.12
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•We use the available deuterium data from ANL 1982 with 1737 events !
and energy peak at 0.5 GeV, BNL 1981 with 1138 events and energy !
peak at 1.6 GeV and FNAL 1983 with 362 events and high energy peak   !
20 GeV.!
•The following table shows the extracted mA from original!

 references, our extraction using original inputs parameters (old) !
and our extraction using present-day best values (new). !

•The z-Expansion is fit with four free parameters, plus an additional four parameter 
satisfying sum rules and one parameter to fix the FA(0)!
•Gaussian priors used on z-Expansion coefficients!
•Gaussian penalties: All the penalties have a central value around 0, motivated by 
bounds from perturbative QCD which require the coefficients to be bounded and 
decreasing!
•Sum rule applied to ensure !
•We use deuterium corrections from Singh (Nuclear Physics B36 (1972)) and we 
examined alternative deuterium corrections 

Deuterium Fitting

with Richard Hill, Rik Gran, Minerba Betancourt

Fitting done on deuterium bubble chamber data
(controlled nuclear e↵ects)

Three datasets (reference hyperlinks online):
• ANL 1982: 1737 events, 0.5GeV [peak]

• BNL 1981: 1138 events, 1.6 GeV [average]

• FNAL 1983: 362 events, 20 GeV [peak], 27 GeV [average]

PRELIMINARY shape-only fits to QE di↵erential cross section data

Results propagated to single nucleon QE total cross section

Gaussian priors used on z-Expansion coe�cients:
if (k  5) �k = 5, else �k = 25/k

Sum rule applied to ensure FA ⇠ 1/Q4 as Q2 ! 1
8 / 26
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•A model independent description of the axial form factor called !
    z-Expansion is derived in Phys. Rev. D84 (2011).!
• The formalism starts with the dispersion relation for the form factor !

!
!
!
    where                  and the integral starts at the three-pion                !
•Using a standard transformation !

!
!
    This transformation takes the kinematically allowed region                  !
 to  within                     . The figure illustrates the mapping !
!
!
!
!
!
!
!
!
!
where t0 is a free parameter and can be chosen for better convergence to z.!
•The form factor can be expressed as a power series in the new  
variable z!

!
!

•Advantages of z-Expansion:!
  Good convergence in small expansion parameters, which a q2 !
expansion cannot do and  better control over systematic errors. !
!
!

•z-Expansion is coded in GENIE with reweighing functionality for the error band, 
and can be implemented in any nuclear model!
•The MINERvA data (Phys. Rev. Lett. 111 (2013)) is compared to the axial form factor 
from dipole and Z-Expansion, both predictions of the differential cross section (axial 
form factor is an input) have been extracted using GENIE neutrino event generator  
with the relativistic Fermi gas model.!

quasielastic neutrino scattering, Q2 = −q2 ≥ 0. As discussed in the Introduction, an expansion
at q2 = 0 defines an “axial mass parameter” mA, via

FA(q
2) = FA(0)

[

1 +
2

m2
A

q2 + . . .

]

=⇒ mA ≡

√

2FA(0)

F ′
A(0)

. (5)

Equivalently, we may define an “axial radius” rA, via

FA(q
2) = FA(0)

[

1 +
r2A
6
q2 + . . .

]

=⇒ rA ≡

√

6F ′
A(0)

FA(0)
. (6)

The factors appearing in (5) and (6) are purely conventional, motivated by the dipole ansatz
(2), and by the analogous charge-radius definition for the vector form factors. Asymptotically,
perturbative QCD predicts [10, 11] a ∼ 1/Q4 scaling, up to logarithms, for the axial-vector
form factor. However, the region Q2 ! 1GeV2 is far from asymptotic, and the functional
dependence of FA(q2) remains poorly constrained at accessible neutrino energies.

2.2 Analyticity

−Q2
max 9m2
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Figure 1: Conformal mapping of the cut plane to the unit circle.

We proceed along lines similar to the vector form factor analysis in [9]. Recall the dispersion
relation for the form factor,

FA(t) =
1

π

∫ ∞

tcut

dt′
ImFA(t′ + i0)

t′ − t
, (7)

where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π. We can make use

of this model-independent knowledge by noticing that the separation between the singular
region, t ≥ tcut, and the kinematically allowed physical region, t ≤ 0, implies the existence of
a small expansion parameter, |z| < 1. As illustrated in Fig. 1, by a standard transformation,
we map the domain of analyticity onto the unit circle in such a way that the physical region
is mapped onto an interval:

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

, (8)
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•We presented preliminary results for the z-Expansion using deuterium data.!
•Data from different experiments is compared against the dipole and z-Expansion 
axial form factors. !
•We present more realistic description of uncertainties in the axial form factor 
using a model independent fit.!
•The z-Expansion is available in GENIE and can be used for current and future 
neutrino experiments.

E(GeV )

I Phys. Rev. D23 (1981)!
II Phys. Rev. D26 (1982)!
III Phys. Rev. D28 (1983)!
!

I!
II!

•Quasi-elastic is described using the free nucleon formalism!
!
!
where s and u are the Mandelstam variables. A, B and C depend on the 
form factors F1, F2 and the axial form factor FA.!
•The F1, F2 are known from electron-nucleon scatterings. The dipole  
ansatz is used to describe the axial form factor !

 !
!

•Experiments with deuterium targets have employed this ansatz, 
obtaining a world average !

!

•Modern experiments using heavy targets, like carbon, from 
MiniBooNE reported a higher axial mass!
•Other experiments such as K2K, SciBar and MINOS find similar 
higher axial mass compared with the world average.!
•This work presents results of a new model-independent approach 
for the axial form factor applied to deuterium data.!

!
!
!
!
!
!
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z-Expansion
The z-Expansion (Bhattacharya, Hill, Paz arXiv:1108.0423
[hep-ph]) is a conformal mapping which takes the kinematically
allowed region (t  0) to within z = ±1
! For reference, later plots will have |zmax| = 0.45

t = q
2 = �Q

2
tc = 9m2

⇡

z(t; t0, tc) =

p
tc � t �

p
tc � t0p

tc � t +
p
tc � t0

FA(z) =
1X

n=0

anz
n

z-Expansion implemented in GENIE, to be released soon [autumn]
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t0 = 0 t0 = topt0 (1.0GeV2)

||FA||2/|FA(t0)| 1.5-1.7 1.9-2.3

||FA||∞/|FA(t0)| 1.0-1.4 1.4-1.8

Table 1: Typical bounds on the coefficient ratios
√

∑

k a
2
k/a

2
0 (first line of table) and |ak/a0|

(second line) in an axial-vector dominance ansatz. The range corresponds to the range 250−
600MeV for the a1 width and the range 1190− 1270MeV for the a1 mass.

where t0 is a free parameter representing the point mapping onto z = 0. Analyticity implies
that the form factor can be expressed as a power series in the new variable,

FA(q
2) =

∞
∑

k=0

akz(q
2)k . (9)

The coefficients ak are bounded in size, guaranteeing convergence of the series. Knowledge of
ImFA over the cut translates into information about the coefficients in the z expansion [9]. In
particular we have

a0 =
1

π

∫ π

0

dθReFA[t(θ) + i0] = FA(t0) ,

ak≥1 = −2

π

∫ π

0

dθ ImFA[t(θ) + i0] sin(kθ) =
2

π

∫ ∞

tcut

dt

t− t0

√

tcut − t0
t− tcut

ImFA(t) sin[kθ(t)] , (10)

where

t = t0 +
2(tcut − t0)

1− cos θ
≡ t(θ) . (11)

2.3 Coefficient bounds

For a given kinematic range 0 ≤ −t ≤ Q2
max, we can choose the free parameter t0 in

(8) to minimize the resulting maximum size of |z|. It is straightforward to see that the

“optimal” value of t0 is topt0 = tcut
(

1−
√

1 +Q2
max/tcut

)

, and for this value of t0, |z| ≤
[(1 + Q2

max/tcut)
1/4 − 1]/[(1 + Q2

max/tcut)
1/4 + 1]. For example, if the kinematic range is

Q2
max ! 1GeV2, then our expansion parameter is constrained to be |z| ! 0.2. Terms be-

yond linear order in the expansion are suppressed by |z|2 ! 0.04, etc., and are not tightly
constrained by current experimental data. This is the sense in which the slope of the form
factor (conventionally taken at q2 = 0) is essentially the only relevant shape parameter. The
effects of the higher order terms must of course be accounted for in assessing the uncertainty
on extracted observables. We now turn to this question.

The expansion coefficients appearing in (9) can be used to define norms,

||FA||p =
(

∑

k

|ak|p
)1/p

. (12)
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Curves are the cross sections for the single nucleon for the z-Expansion and Dipole 
fits, data are the cross sections on carbon from MiniBooNE and NOMAD 
experiments

Dipole

z-Expansion

FA(q
2) =

FA(0)

(1� q2

m2
A
)2

mA = 1.026± 0.021GeV

mA = 1.35± 0.17GeV

III!

FA(0) is constrained from neutron !
beta decay

GeV

GeV

Preliminary shape-only fits are shown

d�

dq2
=

M2G2
F cos

2✓C
8⇡E2

⌫

{A(q2)�B(q2)
s� u

M2
+ C(q2)

(s� u)2

M4
}

Deuterium best fit compared to data on Carbon

•The error band on the Z-Expansion 
prediction is extracted from the joint fit  to 
deuterium data using the same fit parameters 
as the above total cross section fit and the 
error band on the dipole prediction is from 
the world average axial mass extracted from 
deuterium data with mA=0.99 GeV/c2!

•The resulting cross section is higher with the 
best-fit z-Expansion parameters. The quality 
of the fit is similar, but the interpretation of 
the agreement and the presence of the multi-
nucleon effects in carbon might change.!

Differential Cross Section as a function of Q2

 J. Phys. G 28, R1 (2002) !

�2
/DOF 128/97
a1 2.25± 0.21
a2 �1.16± 0.38
a3 �4.2± 1.7
a4 4.6± 2.2

mdipole
A (ref) mdipole

A (old) mdipole
A (new)

BNL 1981 1.07(6) 1.09(6) 1.06(6)

ANL 1982 0.95(9) 1.08(6) 1.05(6)

FNAL 1983 1.05±0.12
0.16 1.20(10) 1.17(10)

2

MiniBooNE: Phys. Rev. D 81 (2010) !
NOMAD: Eur. Phys. J. C 63 (2009)

gA = 1.23 and muon mass was included. BBBA05 uses Fp =
2M2FA
Q2+M2

⇡
.

Olsson Fp = 0.

Nuclear corrections for all the data sets

Ignoring the first bin for ANL 1977, 1973 and FNAL 1983, but not for BNL1981.

mA(papers) mA(BBBA05) mA(Olsson) mA

ANL 1982 1.00± 0.05 1.03± 0.06 1.07±0.06 1.09± 0.06
BNL 1981 1.07± 0.06 1.04± 0.06 1.07±0.06 1.099±0.058
FNAL 1983 1.05±0.12

0.16 1.17± 0.11 1.20± 0.01 1.23± 0.098

Table 1: Extracted mA from deuterium experiments. The first mA values are from the original

publications, the second mA values has been extracted using the BBBA05 parameterizations, the

third mA values has been extracted from the Olsson parameterization.

mA(papers) mA(BBBA05) mA(Olsson)

BNL 1981 1.07± 0.06 1.04± 0.06 1.07±0.06
ANL 1982 1.00± 0.05 1.03± 0.06 1.07±0.06
FNAL 1983 1.05±0.12

0.16 1.17± 0.11 1.20± 0.01

�2
/DOF 168/122
mA 1.05(4)

1

�2
/DOF 167/119
a1 2.36+0.21

�0.19

a2 �0.61+0.42
�0.39

a3 �5.4+1.6
�1.7

a4 5.2+2.5
�2.2

mdipole
A (ref) mdipole

A (old) mdipole
A (new)

BNL 1981 1.07(6) 1.09(6) 1.06(6)

ANL 1982 0.95(9) 1.08(6) 1.05(6)

FNAL 1983 1.05±0.12
0.16 1.20(10) 1.17(10)

2
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Quasi-Elastic Scattering (CCQE)

Minerba Betancourt 06/17/1510

• Quasi-elastic is one of the simplest channel in neutrino scattering
• We use a free nucleon CCQE formalism:

• where 

• Most of the form factors are known, except the axial form factor FA. This is 
parameterized as a dipole

• We need contribution from lattice QCD 

d�

dQ2
QE

=
M2G2

F cos2 ✓C
8⇡E2

⌫

{A(Q2)±B(Q2)
s� u

M2
+ C(Q2)

(s� u)2

M4
}

12/09/13  12

Free nucleon CCQE formalism:

Definitely not simple!

But if you look closely, there are just 6 form factors involved

Quasi-Elastic Scattering

Quasi-Elastic Scattering (CCQE)

FA(Q
2) =

FA(0)

(1� q2

M2
A
)2

d�

dq2
/ (F1, F2, FA)

Electron and muon F2 data 
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Electrons for Neutrinos (e4𝜈)

- Use monochromatic electron beams and large acceptance CLAS and CLAS12 
detectors
- Measure exclusive final states
• constrain nuclear effects
• constrain vector part of interaction

• Improve event generators (GENIE)
• Updated e-GENIE to be as similar as possible to 𝜈-GENIE

• E4𝜈 working groups:
- Data Analysis
- Modeling development 
- Implications on neutrino studies
- Tuning

2

Transparency as a function of proton kinetic energy in
simulation is the number of protons produced with FSI
divided by the number of protons produced without FSI,
as shown in Figure 1. 4He has a greater transparency than
12C, which is greater than 56Fe. This is expected since
increasing nucleon number should increase the probabil-
ity that a proton rescatters inside the nucleus, thereby
decreasing the transparency. For each target, the trans-
parency as a function of proton kinetic energy remains
fairly constant for the 0 to 1 GeV range. GENIE simu-
lations using electron beams with the EMQE channel show
similar transparency results, as shown in Figure 2. The
statistics for this simulation is relatively small at around
50,000 events, but the ordering of the three targets is clear
in the 0 - 0.3 GeV range.
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Figure 1: Transparency as a function of proton kinetic
energy for the three targets with a 2.261 GeV ⌫e beam.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Proton Kinetic Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io
 [F

SI
/N

o 
FS

I]

 Beam (SuSav2)-2.261 GeV e

C-12
He-4
Fe-56

 Beam (SuSav2)-2.261 GeV e

Figure 2: Transparency as a function of proton kinetic
energy for the three targets with a 2.261 GeV e� beam.

III. Methods

We perform these transparency calculation procedures
by analyzing GENIE MC and CLAS data of electron scat-
tering at a beam energy of 2.261 GeV with nuclear targets
4He, 12C, and 56Fe. Additionally, we compared MC sim-
ulations of electron neutrino and electron scattering for
transparency as a function of proton kinetic energy.

We apply cuts on electrons and protons produced in
QE scattering, as shown in Figure 3, to select for sam-
ples to make the transparency ratio measurement. The
denominator of the transparency ratio is the number of
events with a QE-like electron. The numerator of the ra-
tio is the number of events with both a QE-like electron
and a QE-like proton that did not rescatter. In this sec-
tion, we describe two procedures to select these samples
using inclusive electrons for the denominator and inclu-
sive protons for the numerator (procedure 1) or (e,e0p)-
like protons (procedure 2) for the numerator. In addition
to updating the proton sample selection and weighting,
the second procedure uses more detailed cuts to reduce
background. We perform this analysis using macros de-
veloped by the e4⌫ collaboration [8]. Further details for
both procedures are shown below in subsections B and C.

Figure 3: Feynman diagrams of quasi-elastic scattering
for an electron neutrino (left) and an electron (right).

A. Procedure 1 methods

In this section, we show the cuts applied in the first pro-
cedure. For the inclusive electron sample, we use inclusive
weighting WeightIncl to account for e�ciency correc-
tions. For the inclusive proton sample, we use inclusive
weighting ProtonWeight. The electron weight is correct
for a transparency measurement, but the proton weight is
not. The updated proton weight used for QE-like events
is used in procedure 2.

We apply the following cuts on the originally inclusive
electron sample:

1. The electron polar angle ✓e� must be between 23�

and 35�.

2. The spread in the electron azimuthal angle �e� is 12�

centered on the middle of each sector of the detector.
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𝜈A
9

Attacking the Monster From All Sides

e-scattering 𝛎-scattering

Event-Generators

Must reproduce e- & 𝜈 data to 
extract oscillation parameters.

𝜈 near-detector:
• Axial & Vector-Axial 

currents
• Ultra-low Q2
• …

Monochromatic e-:
• Vector currents
• Same initial nucleus
• Similar interactions
• Same final state 

interactions
• …
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Inclusive electron scattering
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Electron Scattering with CLAS at JLab

12

- First exclusive measurements for neutrinos 
- Moderate detector thresholds, 𝑝* > 150 MeV/c, 𝑝+ > 300 MeV/c 
- 𝜃( > 15 ,
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• Choose 0𝜋 events to enhance the QE sample 
- Reconstruct the incident lepton energy
• Cherenkov detectors:

- Using lepton and assuming QE hypothesis
• Tracking detectors

• Calorimetry

First Test of Lepton Energy Reconstruction

Play the QE-like Neutrino Game
• Choose 0% events to enhance the QE sample
– Subtract undetected pions and photons

• Weight by &" to account for photon propagator
Reconstruct the incident lepton energy:
• Cherenkov detectors:

– "#$ = %&!'(%&!$")*"
#

%(&!)$"(,"-./0")
• Use lepton kinematics 
• assuming QE

• Tracking detectors
– "234 = "5 + )6 + * [for (e,e’p) ]
• calorimetry

L. Weinstein, NuFact 2021 20

𝐸-./ = 𝐸(0 + 𝑇+ + 𝐸1$23
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Absolute QE-like C(e,e’)0𝜋 Cross Section

14

• Analyze electron data as neutrino data 
• (𝑒, 𝑒0), 0𝜋
• Correct for events with undetected other particles
• Scale by Q4 to compare with neutrinos
• Reconstruct incoming lepton energy

EQE reconstructed 
from lepton only

1.159 GeV

Overestimation of QE peak and RES tail

Absolute QE-like C(e,e’p)0' Cross Sections

L. Weinstein, NuFact 2021 Khachatryan, Papadopoulou et al, Nature, in press25

Absolute QE-like C(e,e’)0' Cross Sections

L. Weinstein, NuFact 2021
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Khachatryan, Papadopoulou et al, Nature, in press24

QE and MEC: SuSAv2 vs G2018 (Local Fermi Gas + Dytman) 
RES and DIS: Berger-Sehgal + Bodek and Yang 
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Absolute QE-Like (e,e’p) Cross Sections 

15

𝐸-./ = 𝐸(0 + 𝑇+ + 𝐸1$23

Absolute QE-like C(e,e’p)0' Cross Sections

L. Weinstein, NuFact 2021 Khachatryan, Papadopoulou et al, Nature, in press25
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Fig. 4: Reconstructed energies and perpendicular momenta | (Left) the 2.257 GeV C(e, e0p)1p0⇡ cross
section plotted versus missing transverse momentum, PT , for data (black points), SuSav2 (black solid line) and
G2018 (black dashed line). The vertical lines at 200 MeV/c and at 400 MeV/c separate the three bins in PT .
Colored lines show the contributions of di↵erent processes to the SuSAv2 GENIE simulation: QE (blue), MEC
(red), RES (green) and DIS (orange). (Right) The cross section plotted versus the calorimetric energy Ecal for

di↵erent bins in PT : (top) PT < 200 MeV/c, (middle) 200 MeV/c  PT  400 MeV/c, and (bottom)
PT > 400 MeV/c. Error bars show the 68% (1�) confidence limits for the statistical and point-to-point systematic
uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point.

Normalization uncertainties of 3% not shown.

where ~P
e0

T and ~P
p
T are the three-momenta of the detected

lepton and proton perpendicular to the direction of the
incident lepton, respectively. Purely quasi-elastic events
without final state interactions, where the lepton scat-
tered from a bound moving proton, will have small PT ,
consistent with the motion of the struck nucleon. Events
with small PT should thus reconstruct to the correct in-
cident energy. Non-quasi-elastic events, where neutral or
sub-detection-threshold charged particles were produced,
will have larger PT and will not reconstruct to the cor-
rect incident energy. PT is thus an ideal observable for
tuning reaction models to ensure they correctly account
for non-QE processes. �↵T measures the angle between
~PT and the transverse momentum transfer (~qT = �~P

e0

T )
in the transverse plane and is isotropic in the absence of
final state interactions. ��T measures the opening angle
between the detected proton momentum and the trans-
verse momentum transfer and is forward peaked. The
PT peak is intended to characterize the nuclear ground
state, �↵T the FSI and ��T is intended to probe regions
where MEC/2p2h events dominate [30–32].

The PT distribution for 2.257 GeV C(e, e0p)1p0⇡ is

shown in Fig. 4 (and the other targets and energies are
shown in Extended Data Fig. 5). Both data and e-
GENIE peak at relatively low momenta, as expected, and
both have a large tail extending out to 1 GeV/c and con-
taining about half of the measured events. The high-PT

tail is predominantly due to resonance production that
did not result in an additional pion or nucleon above the
detection threshold. e-GENIE using SuSAv2 reproduces
the shape of the data moderately well, suggesting ad-
equate reaction modeling, including the contribution of
non-QE processes such as resonance production.

As expected, both data and e-GENIE/SuSAv2 events
with PT < 200 MeV/c almost all reconstruct to the
correct incident energy. However, events with PT �
400 MeV/c do not reconstruct to the correct energy and
are poorly reproduced by e-GENIE.

This disagreement indicates that including high-PT

data in oscillation analyses could bias the extracted pa-
rameters. As high-PT data accounts for 25� 50% of the
measured events, care must be taken to improve the mod-
els implemented in GENIE, so that they can reproduce
the high-PT data. This will be especially true at the

Transverse Missing Momentum

Overestimation of QE peak and RES tail

Absolute QE-like C(e,e’p)0' Cross Sections

L. Weinstein, NuFact 2021 Khachatryan, Papadopoulou et al, Nature, in press25

Single Transverse 
Variables (PT)

L. Weinstein, NuFact 2021
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Hadron Multiplicities 
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Fig. Extended Data Fig. 2: (left) The ratio of e-GENIE to data for the fraction of the weighted cross section
that reconstructs to the correct incident energy, plotted vs incident energy and, (right) the e-GENIE-data weighted

cross section ratio for events that reconstruct to the correct incident energy, plotted vs incident energy. The
triangles and dashed lines indicate the G2018/data ratios and the squares and solid lines indicate the SuSAv2/data
ratios. SuSAv2 is not intended to model nuclei lighter than 12C. Yellow shows the carbon, blue shows helium, and
green shows iron. Error bars show the 68% (1�) confidence limits for the statistical and point-to-point systematic
uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point.

Normalization uncertainties of 3% not shown.
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Fig. Extended Data Fig. 3: (Left) The proton (black) and charged pion (blue) multiplicities for data (points),
SuSav2 (solid histogram) and G2018 (dashed histogram) for 2.257 GeV carbon. (Right) Comparison between the
inclusive C(e, e0) cross sections measured at 37.5� for data (points) and SuSav2 (lines) for the 0.961 and 1.299 GeV
SLAC data [43] and our 1.159 GeV CLAS data. Error bars show the 68% (1�) confidence limits for the statistical
and point-to-point systematic uncertainties added in quadrature. Error bars are not shown when they are smaller

than the size of the data point. Normalization uncertainties of 3% not shown.

12C @ 2.2 GeV

Pp > 300 MeV/c
Pπ > 150 MeV/c

GENIE overpredicts
hadron multiplicities

Absolute QE-like C(e,e’p)0' Cross Sections

L. Weinstein, NuFact 2021 Khachatryan, Papadopoulou et al, Nature, in press25
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Measuring pions

1𝑝1𝜋: C(e,e’p𝜋) 2.2 GeV

Calorimetric energy: 𝐸 = 𝐸!" + 𝐸# + 𝑇$
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Coming Fall 2021: New Data with CLAS12

• Acceptance down to 5
• x10 luminosity [1035 cm-2 s-1 ]
• Targets:
- 2D, 4He, 12C, 16O, 40Ar, 120Sn
- 1-7 GeV beam energies
- Better neutron & gamma directions
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Parallel Efforts 

JLab

Electron Data
Present
• Jefferson Lab

– Small aperture spectrometers (Hall A)
• (e,e’) and (e,e’p) data at fixed angles and energies

– Large Acceptance Spectrometer (CLAS)
• Wide angular and momentum acceptance
• 1, 2, and 4 GeV beams
• All channels (e,e’), (e,e’p), (e,e’p!), …
• He, C, Fe targets

Future
• Jefferson Lab CLAS12

– Wide angular and momentum acceptance
– 1, 2, 4 and 6 GeV beams
– C, O, and Ar targets

• Mainz (O and Ar gas jet targets)
• SLAC (LDMX arXiv:1912.06140)

L. Weinstein, NuFact 2021 32Mainz (O and Ar )
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Summary

• Neutrino nucleus scattering uncertainties will limit next generation oscillation 
experiment 
• First measurement of wide space phase electron data with CLAS to improve 

neutrino-nucleus scattering model
- Most events do not reconstruct the correct beam energy
- Data/model disagreements will guide model improvements, including QE-like and 

Resonance 
• Collecting more electron data 
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L. Weinstein, NuFact 2021

+ ?

Join us!

36

• Old Dominion University
• MIT
• Jefferson Lab
• Tel Aviv U 

• New collaborators from:
- UCL, 
- College of William & Mary,
- U of Texas, 
- Arlington, 
- Rutgers U, 
- U of Maine 
- LBL

• Michigan State
• Fermilab 
• U Pittsburgh 
• York University, UK

e4ν Collaboration

22

Join us!
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Data Driven Correction
• Non-QE interactions lead to multi-hadron final states
• Gaps make them look like QE-like events 

• Use measure (e,e’p𝜋) events
• Rotate p, 𝜋 around q to determine 𝜋 detection efficiency
• Subtract undetected (e,e’p𝜋) 
• Repeat for higher hadron multiplicities 


