

Electron for Neutrinos

Minerba Betancourt on behalf of the e4v collaboration PANIC 2021, Particles and Nuclei International Conference 08 September 2021

How to Extract Neutrino Physics

Measure counts

Use an interaction model to deconvolute the neutrino flux

 $N_{\alpha}(E_{rec},L) = \sum_{i} \int \Phi_{\alpha}(E,L) \sigma_{i}(E) f_{\sigma_{i}}(E,E_{rec}) dE$ ν Flux interaction model measured

Minerba Betancourt

Measuring Neutrino Oscillations

T2K experiment L=295km

T2K, Phys. Rev. D 91, 072010 (2015)

Interaction Uncertainty will limit future Oscillation Experiment

T2K Nature 580, 339-344 (2020)

•	2	K

	· ·	
Type of Uncertainty	$\nu_e/\bar{\nu}_e$ Candidate Relative Uncertainty (%)	
Super-K Detector Model	1.5	
Pion Final State Interaction and Rescattering Model	1.6	
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7	
Electron Neutrino and Antineutrino Interaction Model	3.0	<u>5% out of 6%!</u>
Nucleon Removal Energy in Interaction Model	3.7	
Modeling of Neutral Current Interactions with Single γ Production	1.5	
Modeling of Other Neutral Current Interactions	0.2	
Total Systematic Uncertainty	6.0	

NOvA

Neutrino-Nucleus Scattering is complicated

Initial nuclear state

- Nucleon motion
- Long range correlations
- Short range correlations
- Nucleon removal energies
- Form factors

Final state interactions

- Reinteractions of outgoing particles
- Knockout of new particles

Credit: Noemi Rocco

Why Electron Scattering?

- e & ν interact similarly
 - Single boson exchange
 - CC Weak current [vector plus axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
 - $j^{em}_{\mu} = \bar{u} \gamma^{\mu} u$
- Many nuclear effects identical
- Final State Interaction (FSI)
- Initial state, reaction mechanism, ...
- e beam energy is known
- \rightarrow can test energy reconstruction

Electrons for Neutrinos (e4 ν)

 $\bar{2}.261~\text{GeV}$ ν_e Beam (SuSav2)

Attacking the Monster From All Sides

e-scattering

Monochromatic e⁻:

- Vector currents
- Same initial nucleus
- Similar interactions
- Same final state interactions

Event-Generators

Must reproduce $e^- \& v$ data to extract oscillation parameters.

 ν near-detector:

- Axial & Vector-Axia currents
- Ultra-low Q²

‡ Fermilab

ν & e⁻ are very similar!

Minerba Betancourt

Inclusive electron scattering

Phys. Rev. D103, 113003, 2021

Electron Scattering with CLAS at JLab

CLAS6 (e,e'p) Data (million events)

	1.1 GeV	2.2 GeV	4.4 GeV
3He	4	9	1
4He		17	3
12C	3	11	2
56Fe		0.5	0.1

Fermilab

- First exclusive measurements for neutrinos
- Moderate detector thresholds, $p_\pi > 150$ MeV/c, $p_p > 300$ MeV/c
- $\theta_e > 15^{o}$

First Test of Lepton Energy Reconstruction

- Choose 0π events to enhance the QE sample
 - Reconstruct the incident lepton energy
 - Cherenkov detectors:

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

- Using lepton and assuming QE hypothesis
 - Tracking detectors

$$E_{cal} = E'_e + T_p + E_{bind}$$

Calorimetry

Absolute QE-like C(e,e')0 π Cross Section

- Analyze electron data as neutrino data
 - (*e*, *e'*), 0π
 - Correct for events with undetected other particles
 - Scale by Q^4 to compare with neutrinos

Absolute QE-Like (e,e'p) Cross Sections

 $E_{cal} = E'_e + T_p + E_{bind}$

Khachatryan, Papadopoulou et al, Nature, in press

Minerba Betancourt

Hadron Multiplicities

Measuring pions

Calorimetric energy: $E = E'_e + E_\pi + T_p$

Coming Fall 2021: New Data with CLAS12

- Acceptance down to 5
- x10 luminosity [10³⁵ cm⁻² s⁻¹]
- Targets:
 - ²D, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ¹²⁰Sn
 - I-7 GeV beam energies
 - Better neutron & gamma directions

Parallel Efforts

Missing Energy [MeV]

100

80

60

40

20

400

-300 -200 -100

0

100

200

300

Missing Momentum [MeV/c]

400

1.2

1.4

2.0

1.6

1.8

E' (GeV)

2.2

Summary

- Neutrino nucleus scattering uncertainties will limit next generation oscillation experiment
- First measurement of wide space phase electron data with CLAS to improve neutrino-nucleus scattering model
 - Most events do not reconstruct the correct beam energy
 - Data/model disagreements will guide model improvements, including QE-like and Resonance
- Collecting more electron data

e4v Collaboration

- Old Dominion University
- MIT
- Jefferson Lab
- Tel Aviv U
- New collaborators from:
 - UCL,
 - College of William & Mary,
 - U of Texas,
 - Arlington,
 - Rutgers U,
 - U of Maine
 - LBL

- Michigan State
- Fermilab
- U Pittsburgh
- York University, UK

Join us!

MAINE

Â

Data Driven Correction

- Non-QE interactions lead to multi-hadron final states
- Gaps make them look like QE-like events

- Use measure (e,e'p π) events
- Rotate p, π around q to determine π detection efficiency
- Subtract undetected (e,e'p π)
- Repeat for higher hadron multiplicities

