# Neutrino oscillations: current status and future opportunities

#### Mariam Tórtola IFIC, CSIC/Universitat de València









MINISTERIO DE CIENCIA E INNOVACIÓN



# Outline

Current status of the standard three-neutrino framework

- ⇒ based on **de Salas et al, JHEP 02 (2021) 071[arXiv:2006.11237]**
- $\Rightarrow$  updated with the results presented in Neutrino 2020 Conference
- $\Rightarrow$  figures and  $\chi^2$  tables publicly available at the website:

https://globalfit.astroparticles.es/

https://doi.org/10.5281/zenodo.4593330

See also: Esteban et al. (NuFIT), Lisi et al.

 $\Rightarrow$  preliminary update using Super-K atmospheric  $\chi$ 2 tables

Future prospects in neutrino oscillations:

 $\Rightarrow$  near future & next generation neutrino oscillation experiments

Beyond the standard three-neutrino scenario:

 $\Rightarrow$  can BSM physics improve oscillation fits?

# The three-flavour v picture

#### neutrino mixing

$$U_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



# Three-neutrino mixing

Currently, we have evidence for neutrino oscillations in atmospheric, solar, reactor and accelerator experiments

Each type of experiment is sensitive to different mixing parameters:

$$U_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
atmospheric + SBL reactor + solar + contract a solar + contract

### **Experimental data**

#### de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



### Neutrino oscillation parameters

#### de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

| parameter                                              | best fit $\pm 1\sigma$             | $3\sigma$ range |              | Bari group<br>analysis |
|--------------------------------------------------------|------------------------------------|-----------------|--------------|------------------------|
| $\Delta m_{21}^2 \ [10^{-5} \mathrm{eV}^2]$            | $7.50\substack{+0.22 \\ -0.20}$    | 6.94-8.14       | 2.7%         |                        |
| $ \Delta m_{31}^2  [10^{-3} \text{eV}^2] \text{ (NO)}$ | $2.55\substack{+0.02 \\ -0.03}$    | 2.47 – 2.63     | 1 10/        | re                     |
| $ \Delta m_{31}^2  [10^{-3} \text{eV}^2] (\text{IO})$  | $2.45_{-0.03}^{+0.02}$             | 2.37 – 2.53     | 1.170        | lati                   |
| $\sin^2 \theta_{12} / 10^{-1}$                         | $3.18\pm0.16$                      | 2.71 – 3.69     | <b>5.2</b> % | ve lo                  |
| $\sin^2 \theta_{23} / 10^{-1} (\text{NO})$             | $5.74\pm0.14$                      | 4.34 - 6.10     | <b>F</b> 101 | un                     |
| $\sin^2 \theta_{23} / 10^{-1} (IO)$                    | $5.78\substack{+0.10 \\ -0.17}$    | 4.33 - 6.08     | 5.1%         | Cer                    |
| $\sin^2 \theta_{13} / 10^{-2} (\text{NO})$             | $2.200\substack{+0.069 \\ -0.062}$ | 2.000 - 2.405   | 2 001        | taint                  |
| $\sin^2 \theta_{13} / 10^{-2} (IO)$                    | $2.225\substack{+0.064\\-0.070}$   | 2.018 - 2.424   | 3.0%         | Y                      |
| $\delta/\pi$ (NO)                                      | $1.08\substack{+0.13 \\ -0.12}$    | 0.71 – 1.99     | 20%          |                        |
| $\delta/\pi$ (IO)                                      | $1.58\substack{+0.15\\-0.16}$      | 1.11 – 1.96     | 9.0%         |                        |

@MariamTortola (IFIC-CSIC/UValencia)

See also

NuFIT and

### Global fit to v oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



### Global fit to v oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



### The solar sector

Solar experiments have measured neutrino disappearance for ~ 50 years



@MariamTortola (IFIC-CSIC/UValencia)

#### PANIC 2021, 05/09/2021

### The solar sector



### Global fit to v oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



# The reactor sector



6 cores + 4 ND + 4FD 2 cores + 1 ND + 1 FD 6 cores + 1 ND + 1 FD

### The reactor sector

#### de Salas et al, **JHEP 02 (2021) 071**[arXiv:2006.11237]



#### Precision dominated by Daya Bay

# The atmospheric sector



# The atmospheric sector



### Global fit to v oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



## The octant of $\theta_{23}$

#### de Salas et al, **JHEP 02 (2021) 071**[arXiv:2006.11237]



→ The combination of LBL experiments prefers  $\theta_{23}$  < 45° for both orderings

♦ The combination with atmospheric data shifts the preferred  $θ_{23}$  to the second octant

The combination with SBL reactors also breaks the degeneracy in favor of 2nd octant

## The octant of $\theta_{23}$



#### New Super-Kamiokande data



#### Y. Nakajima, Neutrino 2020

## The octant of $\theta_{23}$

#### de Salas et al, preliminary de Salas et al, JHEP 02 (2021) 071 2020 IO 15 15 IO く X 1010 NO 5 5 NO 0 0.4 0.5 0.6 0.3 0.4 0.5 0.6 0.7 0.3 0.7 $\sin^2 \theta_{23}$ $\sin^2\theta_{23}$ Values at the 1st octant disfavored Values at the 1st octant disfavored

with  $\Delta \chi^2 \ge 5.8$  (6.4) for NO (IO)

Values at the 1st octant distavored with  $\Delta \chi^2 \ge 0.4$  (3.1) for NO (IO)

 $\rightarrow$  degenerate solutions in NO

### Global fit to v oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



#### H. Tanaka, TAUP 2019





♦  $\delta_{BF} = 1.5\pi$  (1.2π) for NO (IO)

preference driven by
 sub-GeV e-like samples

#### SK Collab. PRD97 (2018)

T2K

 $\delta_{BF} \simeq 3\pi/2 \ due \ to \ better \ agreement \ with \\ observed \ v_e \ and \ v_e \ events$ 

| <b>T2K</b> (NO) |                     | -п/2       | 0    | +π/2 | π    | OBS  |    |
|-----------------|---------------------|------------|------|------|------|------|----|
|                 | umada               | 1Re 0 d.e. | 74.5 | 62.3 | 50.6 | 62.8 | 75 |
|                 | v mode              | 1Re 1 d.e. | 7.0  | 6.1  | 4.9  | 5.9  | 15 |
|                 | $\overline{v}$ mode | 1Re 0 d.e. | 17.1 | 19.6 | 21.7 | 19.3 | 15 |



@MariamTortola (IFIC-CSIC/UValencia)

NOvA

**P Vahle**,

**TAUP 2021** 

#### PANIC 2021, 05/09/2021



♦  $\delta_{BF}$  = 1.5π (1.2π) for NO (IO)

preference driven by
 sub-GeV e-like samples

#### SK Collab. PRD97 (2018)





#### de Salas et al, **JHEP 02 (2021) 071**[arXiv:2006.11237]



• NO: there is a tension between NOvA and T2K and SK atmospheric results  $\delta_{BF} = 1.08\pi$ ;  $\delta = \pi/2$  (0) disfavored at 4.0 $\sigma$  (3.0 $\sigma$ );  $\delta = 3\pi/2$  with  $\Delta \chi^2 = 4.9$ 

#### ◆ IO: all experiments prefer δ ≈ 3π/2

 $\delta_{BF} = 1.58\pi$ ;  $\delta = \pi/2$  ( $\pi$ ) disfavored at 6.2 $\sigma$  (3.8 $\sigma$ );



#### **SK Collab. PRD97 (2018)**

#### Y. Nakajima, Neutrino 2020

#### de Salas et al, preliminary



• NO: there is a larger (smaller) rejection to  $\delta = 0$  and  $\delta = \pi/2$  ( $\delta = 3\pi/2$ )

 $\delta_{BF} = 1.1\pi$ ;  $\delta = \pi/2$  (0) disfavored at 4.2 $\sigma$  (3.4 $\sigma$ );  $\delta = 3\pi/2$  with  $\Delta \chi^2 = 2.0$ 

♦ IO: all experiments prefer δ ≈ 3π/2 (similar results)  $\delta_{BF} = 1.54\pi \text{ ; } \delta = \pi/2 \text{ (π) disfavored at 6.4σ (3.9σ)}$ 

### Global fit to v oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]



# The mass ordering

◆ T2K and NOvA separate analyses prefer
NO with Δ $\chi^2 \approx 0.4$ 

◆ T2K + NOvA combined prefer IO with
∆ $\chi^2 \approx 2.4$  (tension in δ for NO)

◆ LBL + REAC prefer NO with  $\Delta \chi^2 \approx 1.4$ (tension in  $\Delta m^2_{31}$  measurement in IO)

♦ Atmos. sensitivity: Super-K (Δ $\chi^2 \approx 3.5$ ) and DeepCore (Δ $\chi^2 \approx 1.0$ )



◆ Global fit: Δ $\chi^2$  = 6.4 → 2.5σ preference for NO

#### de Salas et al, JHEP 02 (2021) 071

# Other inputs for mass ordering?



Results from the combined bayesian analysis:

- $\Rightarrow$  weak/moderate preference for NO driven by oscillation data (2.0 $\sigma$ )
- $\Rightarrow \beta$ -decay and  $0\nu\beta\beta$  have little impact on MO.
- $\Rightarrow$  cosmological data enhances the preference for NO from 2.0 to 2.7



#### de Salas et al, JHEP 02 (2021) 071

# The mass ordering (preliminary)

New Super-K atmospheric analysis (preliminary) Y.N

Y. Nakajima, Neutrino-2020

Preliminary Super-K analysis shows weaker preference for NO

 $\Rightarrow \Delta \chi^2 = 3.5$  (previous SK analysis)  $\Rightarrow \Delta \chi^2 = 2.9$ 

Super-K results for atm parameters are in more tension with LBL for NO



# The mass ordering (preliminary)

New Super-K atmospheric analysis (preliminary)

Y. Nakajima, Neutrino-2020



♦  $\Delta \chi 2 = 6.4 \rightarrow 2.5\sigma$  preference for NO

•  $\Delta \chi^2 = 3.0 \rightarrow 1.7\sigma$  preference for NO

### Global fit to v oscillation parameters



# Future prospects in neutrino oscillations

# Prospects for precision



~0.7% precision on  $sin^2\theta_{12}$  ~0.6% precision on  $\Delta m^2_{21}$ An et al, 1507.05613

# **Prospects for CP violation**

![](_page_33_Figure_1.jpeg)

 by 2026 (60-70 x 10<sup>20</sup> POT):
 ~ 2σ sensitivity on CP violation at max CP violation (π/2 & 3π/2) •by 2026 (20×10<sup>21</sup> POT): > 3σ sensitivity on CP violation

# Prospects for mass ordering

![](_page_34_Figure_1.jpeg)

## Next generation of v experiments

#### DUNE

![](_page_35_Figure_2.jpeg)

- 1.2 MW wide-band beam from FNAL to SURF (1300km)
- 4x10 kt Liquid Argon TPCs
- capability to probe 2nd oscillation max
- great sensitivity to mass ordering

#### Hyper-Kamiokande

![](_page_35_Picture_8.jpeg)

 188 kton water Cerenkov
 T2HK: great sensitivity to δ<sub>CP</sub>
 T2HKK (1100km) will have similar sensitivities as DUNE

### Next generation of v experiments

![](_page_36_Figure_1.jpeg)

# Beyond the standard three-neutrino scenario

# Beyond the 3-neutrino scenario

♦ Neutrino results suggest the presence of physics BSM to explain:

- ✓ light neutrino masses (mass generation mechanism)
- ✓ large neutrino mixing compared to quark sector (flavour problem)
- ✓ short-distance anomalies (LSND, reactor and Ga anomalies)

Many different BSM scenarios analyzed in the literature:

- ✓ neutrino non-standard interactions (NSI) with matter
- ✓ exotic neutrino electromagnetic properties
- ✓ presence of light sterile neutrinos
- ✓ mixing with heavy sterile neutrinos: non-unitary neutrino mixing

⇒ the presence of new physics may affect our current description of 3-nu oscillations as well as the future measurements

#### Can they also help reducing the current tensions?

### The solar-KamLAND $\Delta m^2_{21}$ tension

![](_page_39_Figure_1.jpeg)

 $\Rightarrow 2\sigma$  tension between preferred value of  $\Delta m^2{}_{21}$  from KamLAND and solar data

 $\Rightarrow \Delta m^2_{21}$  preferred by KamLAND predicts steep upturn and smaller D/N asymmetry

♦ NSI ( $\varepsilon \sim 0.3$ ) can reconcile both results:

- $\Rightarrow$  flatter spectrum at intermediate E-region
- $\Rightarrow$  larger D/N asymmetries can be expected

Escrihuela et al, PRD80 (2009); Coloma et al, PRD96 (2017)

![](_page_39_Figure_8.jpeg)

Maltoni & Smirnov, EPJ 2015

### The T2K-NOvA $\delta_{CP}$ tension

• NSI may include new sources of CP violation besides  $\delta_{CP}$ :  $\epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}| \exp(i\phi_{\alpha\beta})$ 

• CP-violating NSI with a new complex phase  $\phi_{e\mu}$  or  $\phi_{e\tau}$  close to maximal with NSI couplings  $\epsilon_{e\mu}$  or  $\epsilon_{e\tau}$  of the order of 0.2 may reconcile T2K and NOvA results.

![](_page_40_Figure_3.jpeg)

#### Chatterjee and Palazzo, PRL 2021

Denton et al, PRL 2021

### The T2K-NOvA $\delta_{CP}$ tension

CPT-violating analysis of T2K and NOvA (normal ordering)

![](_page_41_Figure_2.jpeg)

Barenboim, Ternes, MT, JHEP2020

- the tension appears only in the v channel, with less sensitivity
- $\blacklozenge$  all values of  $\delta$  and  $\bar{\delta}$  remain allowed at  $\sim 1\sigma$
- ♦ θ<sub>13</sub> ≠ θ<sub>13</sub> can account for
   different behavior in neutrino
   and antineutrino channels
- ⇒ very poor sensitivity on CP
   violation compared to CPT conserving scenario

### The T2K-NOvA $\delta_{CP}$ tension

Non-unitary mixing analysis of T2K and NOvA (normal ordering)

![](_page_42_Figure_2.jpeg)

NU includes additional sources of CP violation.

♦ No significant deviation from unitary mixing is found: updated bounds with LBL and SBL ⇒MINOS improves current neutrino limits!

 $\Rightarrow$  The tension is not alleviated in the context of NU neutrino mixing

# Summary

- Current status of three-neutrino oscillation parameters:
  - ✓ very precise and robust determinations for most of them (1.3-10%)
  - ✓ preference for  $\theta_{23} > 45^{\circ}$ , 1st octant value disfavoured with  $\Delta \chi^2 \ge 5.8$  (6.4)
  - ✓  $\delta_{BF} = 1.08\pi (1.58\pi)$  for NO (IO);  $\delta = \pi/2$  disfavored at 4.0 $\sigma$  (6.2 $\sigma$ )
  - $\checkmark$  2.5 $\sigma$  hint for normal ordering from atmospheric, LBL and reactor data
- Preliminary Super-K atmospheric data may change some results:
  - ✓ degenerate octant solutions for  $\theta_{23}$ :  $\Delta \chi^2$  (1st octant) = 0.4 (3.1) for NO (IO)
  - ✓ similar results for CP-violation, with  $\delta = \pi/2$  disfavored at 4.2 $\sigma$  (6.4 $\sigma$ )
  - $\checkmark$  preference for normal ordering reduced to  $1.7\sigma$

#### **→** By 2025/2026:

- ✓ oscillation parameters will be measured with 0.6-3% precision
- ✓  $\theta_{23}$  octant can be resolved at more than  $3\sigma$  (for some values)
- ✓ 2-3σ sensitivity to CP violation at NOvA and T2K
- $\checkmark$  3 $\sigma$  sensitivity to MO from reactor, accelerator and nu-telescopes
- $\Rightarrow$  sensitivities above  $3\sigma$  from a single experiment: DUNE, Hyper-Kamiokande

• New physics BSM may affect the current description of neutrino oscillations relaxing tensions or worsening the precision of measurements.