

22nd edition Particles and Nuclei International Conference - Sep the 8th, 2021

Neutrinoless double beta decay (0vββ)

Double beta decay:

- Rare second order Fermi weak nuclear transition •
- Candidates: even-even nuclei, when single β decay • energetically forbidden

V. Dompè - Latest results from the CUORE experiment - PANIC2021, Sep 8th 2021

Lepton number violating process: $\Delta L = 2$, would demonstrate that **L** is not a symmetry of nature

Only possible if neutrinos have a Majorana component ($\nu = \overline{\nu}$): new possible mechanism giving rise to v mass

Possible explanation of **matter-antimatter asymmetry** origin via Leptogenesis

CUORE: Cryogenic Underground Observatory for Rare Events

- Main Physics goal: search for 0vββ decay of ¹³⁰Te (Q_{ββ} ~ 2528 keV)
- Located at the underground Laboratori Nazionali del Gran Sasso of INFN: 3650 m.w.e. of rock coverage to suppress the cosmic radiation
- 988 natural TeO₂ crystals (742 kg of TeO₂, 206 kg of ¹³⁰Te) arranged in 19 towers
- ¹³⁰Te embedded in the detector itself: ~90% detection efficiency
- Crystals operated as calorimeters at ~10 mK •

CUORE: Cryogenic Underground Observatory for Rare Events

- Crystal: solid state detector working as calorimeter
- TeO₂ absorber where the particle energy is deposited
- The temperature variation is measured by the thermal sensor (NTD Ge)
- Si heater periodically injecting a fixed energy for the thermal gain stabilization

$$\Delta T = \frac{\Delta E}{C}$$
heat capacity: $C_{TeO_2} \propto T^3$

 $T_0 = 300 \text{ K}$: $\Delta E = 1 \text{ MeV} \rightarrow \Delta T \sim 10^{-18} - 10^{-15} \text{ K}$

 $T_0 = 10 \text{ mK}$: $\Delta E = 1 \text{ MeV} \longrightarrow \Delta T \sim 0.1 \text{ mK}$

The CUORE Challenges CUORE

- Ton-scale infrastructure cooled down by a custom built cryogen-free structure: 5 pulse tubes + ³He/⁴He Dilution Refrigerator
- Operational T ~ 10 mK stable over years
- Background level goal of 10⁻² counts/(keV·kg·yr):
 - low-radioactivity materials choice, strict cleaning and assembling protocols
 - ➡ Roman ²¹⁰Pb-depleted + modern lead shields
 - → Neutrons shield: external polyethylene layer with boric acid panels
- Energy resolution < 8 keV FWHM at ¹³⁰Te Q_{ββ}:
 - Minimization of vibrational noise: external support structure mechanically decouples the detectors from the cryostat

- Data taking organization: *runs* (physics, calibration, test,...) •
- *Dataset* (40 60 days) = initial calibration runs + physics runs + • final calibration runs
- CUORE data taking started in Spring 2017 •
- 2017 beginning of 2019: mostly devoted to cryogenic • interventions and detector optimizations
- From 2019 on: duty cycle improved from 36.1% to 92.4% • (65.3% of physics data)
- CUORE data taking is proceeding smoothly (~69 kg · yr/month) since spring 2019)
- 5 years live time is foreseen

The CUORE data collection **CUORE**

2021: 1-ton · yr analyzed exposure milestone!

- Total collected raw exposure: 1409.28 kg yr
- Total analyzed exposure: 1038.4 kg · yr

The CUORE data processing

V. Dompè - Latest results from the CUORE experiment - PANIC2021, Sep 8th 2021

9

10

- •

- Resolution appears energy dependent, small bias on energy reconstruction
- 2nd order polynomial fit to extract the resolution and bias energy dependence

11

The CUORE detector response function (*lineshape*)

TeO₂ detectors exhibit a slightly non-gaussian response function

Lineshape evaluated on the 2615 keV line in calibration: fit with 3 Gaussian for each detector-dataset

Energy resolution in calibration is extracted (7.8(5) keV)

- **Base cuts:** periods of time with high noise level, ٠ processing failures, poor resolution detectors are excluded
- Anti-coincidence cut (AC): events within ± 5ms from ٠ another triggered event at > 40 keV in a distinct crystal are excluded
- **Pulse shape discrimination cut (PSD)**: abnormal pulse ٠ shape events (pile-up, non-physical pulses) are excluded

Containment efficiency	Single-hit event probability for ¹³⁰ Te $0\nu\beta\beta$	88.35(
Reconstruction efficiency	Probability that a signal event is triggered and not rejected by base cuts, the energy is properly reconstructed	96.418
AC efficiency	Probability that a signal event is not cut due to an accidental coincidence with an unrelated event	99.3(1
PSD efficiency	Probability of a physical event to survive the PSD cut	96.4(2

ROI fit: new results on 0vββ decay of ¹³⁰Te CUORE

- Unbinned Bayesian fit simultaneously performed for each detectordataset with BAT ---- samples from the posterior distribution of all the parameters of the model with a
- Uniform prior on the signal rate
- ROI: [2490 2575] keV
- Total TeO₂ exposure: 1038.4 k
- No evidence of ¹³⁰Te $0\nu\beta\beta$ deca
- Systematics effects as nuisance (0.8% total effect on the Γ_{0v} limit
 - **Efficiencies** (reconstruction, anti-coincidence, PSD, containment)
 - ¹³⁰Te isotopic abundance
 - **Q**_{ββ}
 - Lineshape parameters (energy bias and resolution scaling)

$0v\beta\beta$ ROI fit: limit on effective Majorana mass (m_{ββ})

In the assumption that the $0\nu\beta\beta$ decay is mediated by the exchange of a light Majorana neutrino:

 $T_{1/2} > 2.2 \cdot 10^{25}$ yr (limit 90% C.I.)

m_{ββ} < 90 - 305 meV (90% C.I.)

<u>arXiv:2104.06906 (2021)</u>

14

Exclusion sensitivity on ¹³⁰Te 0vββ half-life

- 10⁴ toyMC with background components only (no signal), floating the parameters extracted from the fit on data •
- Bayesian fit with signal + background components independently run on each toyMC
- Extraction of the 90% C.I. half-life limit from each of the 10⁴ Bayesian fits
- **Exclusion Sensitivity = median of the half-life limits distribution** •

 $2\nu\beta\beta$ contribution to the CUORE spectrum can be disentangled through the **Background Model fit**

- Detailed GEANT4 MC simulation of the background sources
- Bayesian fit on experimental data with a linear combination of the MC simulations
- Fit on 350 keV 2.8 MeV energy region (dominated by 2vββ decay of ¹³⁰Te)
- Fit parameters: a normalization factor for each source is extracted and used to obtain the **activity** of the contaminants and **half-lives** of processes (e.g. 2vββ decay T_{1/2})

The CUORE Background Model: 2vββ decay of ¹³⁰Te

The CUORE Background Model: 2vββ decay of ¹³⁰Te

 $T_{1/2}^{2\nu} = 7.71_{-0.06}^{+0.08} (stat)_{-0.15}^{+0.12} (syst) \cdot 10^{20} \text{ yr}$

Most precise measurement of ¹³⁰Te 2vββ decay half-life to date

<u>Phys. Rev. Lett., 126:171801, 2021</u>

- CUORE is the first ton-scale experiment for double beta decay search operating cryogenic detectors
- 1 ton · yr analyzed data milestone achieved, stable operation for ton-scale cryogenic detector is possible
- Data taking is smoothly ongoing aiming at 5 years live time
- New results on ¹³⁰Te 0vββ decay (1038.4 kg · yr exposure): most stringent half-life limit to date <u>arXiv:2104.06906 (2021)</u>
- New results on ¹³⁰Te 2vββ decay (300.7 kg · yr exposure): most precise half-life measurement to date <u>Phys. Rev. Lett., 126:171801, 2021</u>
- Other rare decay searches in CUORE: ¹³⁰Te 0v and 2v to excited states (*Eur. Phys. J. C, (2021) 81:567*), ¹²⁸Te and ¹²⁰Te 0v/2v, ¹³⁰Te 0v in M2 spectrum, low energy studies, ...

Thank you!

