Neutrino mixing from flavour symmetry

Gui-Jun Ding

University of Science and Technology of China

22nd Particles and Nuclei International Conference, September 8th, 2021, Lisbon, Portugal

Current experimental results on lepton mixing

		_	
parameter	best fit $\pm \; 1\sigma$	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.50^{+0.22}_{-0.20}$	7.12 - 7.93	6.94 - 8.14
$\begin{split} \Delta m^2_{31} [10^{-3} \mathrm{eV^2}] \ \mathrm{(NO)} \\ \Delta m^2_{31} [10^{-3} \mathrm{eV^2}] \ \mathrm{(IO)} \end{split}$	$2.55_{-0.03}^{+0.02} \\ 2.45_{-0.03}^{+0.02}$	2.49-2.60 2.39-2.50	2.47 – 2.63 2.37 – 2.53
$\sin^2 \theta_{12}/10^{-1} \\ \theta_{12}/^{\circ}$	3.18 ± 0.16 34.3 ± 1.0	2.86 - 3.52 32.3 - 36.4	2.71 – 3.69 31.4 – 37.4
$\sin^2 \theta_{23}/10^{-1}$ (NO) $\theta_{23}/^{\circ}$ (NO) $\sin^2 \theta_{23}/10^{-1}$ (IO)	5.74 ± 0.14 49.26 ± 0.79 5.79 ± 0.10	5.41-5.99 47.37-50.71 5.41 5.08	4.34-6.10 41.20-51.33
$\theta_{23}/^{\circ}$ (IO)	$49.46^{+0.60}_{-0.97}$	47.35-50.67	41.16-51.25
$\frac{\sin^2 \theta_{13}/10^{-2} \text{ (NO)}}{\theta_{13}/^{\circ} \text{ (NO)}}$ $\frac{\sin^2 \theta_{13}/10^{-2} \text{ (IO)}}{\sin^2 \theta_{13}/10^{-2} \text{ (IO)}}$	$2.200^{+0.069}_{-0.062}$ $8.53^{+0.13}_{-0.12}$ $2.225^{+0.064}_{-0.070}$	2.069–2.337 8.27–8.79 2.086–2.356	2.000-2.405 8.13-8.92 2.018-2.424
$\theta_{13}/^{\circ}$ (IO)	$8.58^{+0.12}_{-0.14}$	8.30 - 8.83	8.17 - 8.96
	$1.08^{+0.13}_{-0.12}$ 194^{+24}_{-22} $1.58^{+0.15}_{-0.16}$ 284^{+26}_{-28}	0.84-1.42 152-255 1.26-1.85 226-332	0.71-1.99 128-359 1.11-1.96 200-353

[P.F. de Salas et al, arXiv: 2006.11237]

- Octant of θ_{23} : > or <45°?
- What is the value of δ_{CP} ?

- Mass hierarchy: NO or IO?
- Absolute mass scale: m_{lightest}=?
- Majorana or Dirac neutrinos?
- Why m_v so small?
- Connections to other new physics?

2

CKM vs PMNS

Symmetry as a guiding principle to flavor puzzle

Relate lepton mixing to how are G_f broken, lepton mixing matrix arises from mismatch of the different residual subgroups G_1 and G_2

[Altarelli, Feruglio, 1002.0211; Tanimoto et al., 1003.3552; King and Luhn, 1301.1340; Feruglio, Romanino, arXiv:1912.06028]

Direct approach of flavor symmetry

[King and Luhn, 1301.1340]

- Klein symmetry S,U and T are each identified as subgroups of some flavor symmetry G_f
- Only trimaximal mixing can be compatible with data

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2}\cos\theta & 1 & -\sqrt{2}\sin\theta \\ -\sqrt{2}\cos(\theta - \pi/3) & 1 & \sqrt{2}\sin(\theta - \pi/3) \\ -\sqrt{2}\cos(\theta + \pi/3) & 1 & \sqrt{2}\sin(\theta + \pi/3) \end{pmatrix}$$

heta depends on groups $G_{\!f}$, G_l , G_v

> Dirac CP phase δ_{CP} is predicted to be **conserved**.

[Lindner et al., 1212.2411; King, Neder, Stuart,1305.3200;Fonseca and Grimus, 1405.3678;Yao, Ding, 1505.03798] 5 If the lepton mixing matrix is partially determined by the flavor symmetry G_f , G_l and G_v , e.g. $G_v = Z_2$ For example, two deformations of TBM TM, TM₁ $U = U_{TBM} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta e^{-i\delta} \\ 0 & -\sin\theta e^{i\delta} & \cos\theta \end{pmatrix},$

Two predictions in terms of sum rules

He, Zee, 07 and 11; Grimus, Lavoura, 08; Albright, Rodejohann, 09; King, Luhn 11; Chen, Vale et., 1812.04663, 1905.11997...

[Ge, Dicus, Repko, 1104.0602; Hernandez and Smirnov, 1204.0445]

$$U = U_{TBM} \begin{pmatrix} \cos \theta & 0 & \sin \theta e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta e^{i\delta} & 0 & \cos \theta \end{pmatrix}$$

$$3\sin^2 \theta_{12} \cos^2 \theta_{13} = 1$$
$$\sin^2 \theta_{23} \approx \frac{1}{2} + \frac{1}{\sqrt{2}} \sin \theta_{13} \cos \delta_{CP}$$

7

Leptonic CP violation

[Grimus,Rebelo,hep-ph/9506272; Feruglio et al., 1211.5560; Lindner et al., 1211.6953]

a simple predictive CP symmetry: μτ reflection

 $\mu\tau$ reflection = $\mu\tau$ exchange+canonical CP

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} \stackrel{v_{e}}{\rightarrow} \begin{pmatrix} v_{e}^{c} \\ v_{\tau}^{c} \\ v_{\tau}^{c} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} v_{e}^{c} \\ v_{\mu}^{c} \\ v_{\tau}^{c} \end{pmatrix}$$

This CP transformation is **not** a unit matrix.

If the neutrino mass matrix is **invariant** under the $\mu\tau$ reflection

[Harrison, Scott, hep-ph/0210197; Grimus, Lavoura, hep-ph/0305309]

Generalized μτ reflection

the generalized $\mu\tau$ reflection of neutrino $\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \Theta & i \sin \Theta \\ 0 & i \sin \Theta & \cos \Theta \end{pmatrix} \begin{pmatrix} v_e^c \\ v_e^c \\ v_\mu^c \\ v_\tau^c \end{pmatrix},$ 1512.01551, 1802.04275] $\mu \tau \text{ reflection: } \Theta = \pi / 2$

[Chen, Ding, Valle et al,

In the charged lepton diagonal basis, the lepton mixing matrix is

$$U = \Sigma_{\mu\tau} O_{3\times 3} diag(1, i^{k_1}, i^{k_2}), \qquad \Sigma_{\mu\tau} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\Theta}{2} & i\sin\frac{\Theta}{2} \\ 0 & i\sin\frac{\Theta}{2} & \cos\frac{\Theta}{2} \end{pmatrix}$$

Lepton mixing matrix is determined up to a real orthogonal matrix O_{3x3}

Predictions for lepton mixing parameters:

 $\sin^2 \delta_{CP} \sin^2 2\theta_{23} = \sin^2 \Theta, \qquad \sin \alpha_{21} = \sin \alpha'_{31} = 0$

Numerical example:

 $\Theta = \frac{\pi}{3}, \quad \theta_1 = 0.274\pi, \quad \theta_2 = 0.0475\pi, \quad \theta_3 = 0.813\pi,$ $\sin^2 \theta_{12} = 0.307, \quad \sin^2 \theta_{13} = 0.0221, \quad \sin^2 \theta_{23} = 0.538, \quad \delta_{CP} = 1.335\pi$

Semi-direct approach to lepton mixing

The mixing angles and CP violating phases are predicted in terms of a single real parameter $0 \le \theta < \pi$. One column is fixed.

➢quark mixing can not be explained in semi-direct approach. ¹¹

Benchmark examples

[Li et al, 1503.03711, lura et al., 1503.04140, For popular flavor symmetries A_4 , S_4 , A_5 : Ballett et al.,1503.07543] $\delta_{CP} = \pm \pi / 2, \ \theta_{23} = \pi / 4$ or $\delta_{CP} = 0, \pi, \ \theta_{23} \neq \pi / 4$ Flavor group $G_f = \Delta(96)$, residual symmetry $G_e = Z_3^{ac^3}, G_v = Z_2^{c^2}, X_v = c^2 d$ $U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \omega^2 e^{i\pi/4} \cos \theta - \omega \sin \theta & 1 & \omega^2 e^{i\pi/4} \sin \theta + \omega \cos \theta \\ e^{i\pi/4} \cos \theta - \sin \theta & 1 & e^{i\pi/4} \sin \theta + \cos \theta \\ \omega e^{i\pi/4} \cos \theta - \omega^2 \sin \theta & 1 & \omega e^{i\pi/4} \sin \theta + \omega^2 \cos \theta \end{pmatrix}, \quad \begin{bmatrix} \text{Ding et al., 1409.8005;} \\ \text{Hagedorn et al., 1408.7118]} \\ \omega \equiv e^{2\pi i/3} \end{pmatrix}$ $\Rightarrow \begin{cases} \sin^2 \theta_{13} = \frac{1}{3} - \frac{\sqrt{3} + 1}{6\sqrt{2}} \sin 2\theta, & \sin^2 \theta_{12} = \frac{2\sqrt{2}}{4\sqrt{2} + (\sqrt{3} + 1)\sin 2\theta}, & J_{CP} = -\frac{\cos 2\theta}{6\sqrt{3}}, \\ \Rightarrow \\ \sin^2 \theta_{23} = \frac{1}{2} + \frac{(3 - \sqrt{3})\sin 2\theta}{8\sqrt{2} + 2(\sqrt{3} + 1)\sin 2\theta}, & I_1 = \frac{1}{18} (1 + (\sqrt{3} - 1)\sin^2 \theta + \sqrt{2}\sin 2\theta), & I_2 = \frac{\cos 2\theta}{18} \end{cases}$

Numerical results:

non-regular values of CP phases

 $\theta_{bf} = 0.209\pi, \quad \chi^2_{min} = 7.960, \quad \sin^2 \theta_{12} = 0.341, \quad \sin^2 \theta_{13} = 0.0220,$ $\sin^2 \theta_{23} = 0.574, \quad \sin \delta_{CP} = -0.722, \quad \sin \alpha_{21} = 0.683, \quad \sin \alpha_{31} = -0.091.$

Universal flavor symmetry for quark and lepton mixing

- All mixing angles and CP phases are expressed in terms of two free angles θ_l,ε[0,π)
- This scheme can be extended to quark sector, and the CKM mixing matrix is of similar form

Quark and lepton mixing from Dihedral group D_n and CP

Quark sector:

Assignment: 2+1

$$\begin{pmatrix} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \\ \begin{pmatrix} c_L \\ s_L \end{pmatrix} \end{pmatrix} \sim \mathbf{2}_1, \quad \begin{pmatrix} t_L \\ b_L \end{pmatrix} \sim \mathbf{1}_1$$

[Lu, Ding, 1901.07414]

Residual symmetry: $Z_2^{g_u} = Z_2^{SR^x}, X_u = SR^{n/2}, Z_2^{g_d} = Z_2^{SR^y}, X_d = S, x, y = 0, ..., n-1$

The CKM matrix is determined to be $c_{u,d} \equiv \cos \theta_{u,d}$, $s_{u,d} \equiv \sin \theta_{u,d}$

$$V_{CKM} = \begin{pmatrix} -c_d \sin \varphi_1 & \cos \varphi_1 \\ c_u c_d \cos \varphi_1 + i s_u s_d & c_u \sin \varphi_1 \\ -c_d s_u \cos \varphi_1 + i c_u s_d & -s_u \sin \varphi_1 & s_u s_d \cos \varphi_1 + i c_u s_d \end{pmatrix}$$

with
$$\varphi_1 = \frac{y - x}{n}$$
 fixed by residual symmetry
 \gg Sum rules
$$\begin{cases}
\cos^2 \theta_{13}^q \sin^2 \theta_{12}^q = \cos^2 \varphi_1, \\
J_{CP}^q \approx \frac{1}{2} \sin 2\varphi_1 \sin \varphi_2 \sin \theta_{13}^q \sin \theta_{23}^q
\end{cases}$$

> Benchmark value: $\varphi_1 = 3\pi/7$ which can be achieved in D_{14} group

	$ heta_1^{ m bf}/\pi$	$\theta_2^{\rm bf}/\pi$	$\sin\theta_{12}^q$	$\sin\theta^q_{23}$	$\sin\theta^q_{13}$	J^q_{CP}
Our	0.01326	0.00117	0.22252	0.04166	0.00357	3.224×10^{-5}
Data			0.22500 ± 0.00100	0.04200 ± 0.00059	0.003675 ± 0.000095	$(3.120 \pm 0.090) \times 10^{-5}$

The measured quark mixing angles and CP violation phases can be accommodated.

 \succ Lepton sector : $\phi_1 = 2\pi/7$

Numerical benchmark:

 $\begin{aligned} \theta_l &= 0.562\pi, \quad \theta_{\nu} = 0.186\pi, \quad \chi^2_{\min} = 1.824, \\ \sin^2 \theta_{13} &= 0.0226, \quad \sin^2 \theta_{12} = 0.310, \quad \sin^2 \theta_{23} = 0.602, \\ \delta_{CP} &= 1.467\pi, \quad |\sin \alpha_{21}| = 0.503, \quad |\sin \alpha_{31}| = 0.358 \end{aligned}$

16

Recent progress: modular symmetry

Modular invariance as flavor symmetry

Modular transformation of chiral superfield in MSSM

$$\gamma \tau = \frac{a\tau + b}{c\tau + d}, \quad \chi^{(1)} \rightarrow (c\tau + d) \stackrel{(k)}{\longrightarrow} \rho^{(1)}(\gamma) \chi^{(1)}$$

$$Modular weight$$
unitary representation of finite
modular groups Γ'_{N} or Γ_{N}

$$W = \sum_{n} Y_{I_{1}\cdots I_{n}}(\tau) \chi^{(I_{1})} \cdots \chi^{(I_{n})}$$
Yukawa couplings only depend on τ
Modular invariance requires a holomorphic $Y_{I_{1}I_{2}\cdots I_{n}}(\tau)$ satisfying

$$Y_{I_{1}\cdots I_{n}}(\gamma \tau) = (c\tau + d)^{k_{Y}(n)} \rho^{(Y)}(\gamma) Y_{I_{1}\cdots I_{n}}(\tau)$$

$$Y_{I_{1}I_{2}\cdots I_{n}}(\tau) \text{ satisfying}$$

$$Y_{I_{1}\cdots I_{n}}(\gamma \tau) = (c\tau + d)^{k_{Y}(n)} \rho^{(Y)}(\gamma) Y_{I_{1}\cdots I_{n}}(\tau)$$

$$Y_{I_{1}I_{2}\cdots I_{n}}(\tau) \text{ are modular forms of level N and weight } k_{Y}$$
beying
$$\begin{cases} k_{Y}(n) + k_{I_{1}} + \ldots + k_{I_{n}} = 0 \\ \rho^{(Y)} \otimes \rho^{(I_{1})} \otimes \cdots \otimes \rho^{(I_{n})} \supset 1 \end{cases}$$
Lowest weight 2 modular forms of level 3 transforms as a triplet of A_{4}
$$Y_{3}^{(2)} = \begin{pmatrix} \varepsilon^{2}(\tau) \\ \sqrt{2} \ \vartheta(\tau) \varepsilon(\tau) \\ -\vartheta^{2}(\tau) \end{pmatrix} = \begin{pmatrix} 1+12q+36q^{2}+\cdots \\ -6q^{1/3}(1+7q+8q^{2}+\cdots) \\ -18q^{2/3}(1+2q+5q^{2}+\cdots) \end{pmatrix}$$

$$\varepsilon(\tau) = -\frac{3\eta^{3}(3\tau) + \eta^{3}(\tau/3)}{\eta(\tau)}$$

tesor product generate high weight modular forms

0

 $\eta(\tau)$

Example: a minimal model based on $\Gamma_3 = A_4$

Field content Including gCP symmetry to constrain all couplings real (e^c, μ^c, τ^c) N^c H_u L H_d $SU(2)_L \times U(1)_Y |(2, -1/2)|$ (1,1) (1,0)(2,1/2)(2,-1/2)(1, 1, 1')3 1 A_{Λ} 3 $\overline{1}$ (3, 5, 9) $^{-1}$ 0 k_I Ω

Charged lepton mass terms

[Yao, Lu, Ding, 2012.13390]

 $W_{\rho} = \alpha e^{c} (LY_{3}^{(2)})_{1} H_{d} + \beta \mu^{c} (LY_{3}^{(4)})_{1} H_{d} + \gamma \tau^{c} (LY_{3I}^{(8)})_{1''} H_{d} + \gamma' \tau^{c} (LY_{3II}^{(8)})_{1''} H_{d}$

$$M_{e} = \begin{pmatrix} \alpha Y_{3,1}^{(2)} & \alpha Y_{3,3}^{(2)} & \alpha Y_{3,2}^{(2)} \\ \beta Y_{3,1}^{(4)} & \beta Y_{3,3}^{(4)} & \beta Y_{3,2}^{(4)} \\ \gamma Y_{3I,3}^{(8)} + \gamma' Y_{3II,3}^{(8)} & \gamma Y_{3I,2}^{(8)} + \gamma' Y_{3II,2}^{(8)} & \gamma Y_{3I,1}^{(8)} + \gamma' Y_{3II,1}^{(8)} \end{pmatrix} v_{A}$$

 $W_{\nu} = g(N^{c}L)_{1}H_{\mu} + \Lambda(N^{c}N^{c}Y_{3}^{(2)})_{1}$ Neutrino mass terms:

 $M_{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0_{3} \end{pmatrix} gv_{u}, \quad M_{N} = \begin{pmatrix} 2Y_{3,1}^{(2)} & -Y_{3,2}^{(2)} & -Y_{3,2}^{(2)} \\ -Y_{3,3}^{(2)} & 2Y_{3,2}^{(2)} & -Y_{3,1}^{(2)} \\ -Y_{3,2}^{(2)} & -Y_{3,1}^{(2)} & 2Y_{3,2}^{(2)} \end{pmatrix} \Lambda \qquad \begin{array}{c} \text{mass matrix only} \\ \text{depends on } \tau \text{ up to} \\ \text{an overall scale} \\ \end{array}$

The light neutrino

NO flavons

7 real input parameters describe 12 obervables: $m_{e,\mu,\tau}$, $m_{1,2,3}$, θ_{12} , θ_{13} , θ_{23} , δ , α_{21} , α_{31}

The complex modulus τ is the only source of both CP violation and flavor symmetry breaking

✓ The best fit value $\tau \simeq 0.19 + 1.09i$ is close to the self-dual point $\tau = i$

Numerical results for CP violation phases:

CP is conserved for modulus τ imaginary or at the border of the fundamental domain, a small deviation can generate large CP violation.

Further development of modular symmetry

Baur, Chen, Criado, Ding, Feruglio, King, Kobayashi, Li, Liu, Lu, Nilles, Nomura, Novichkov, Okada, Penedo, Petcov, Ramos-Sanchez, Ratz, Y.Shimizu, Tanimoto, Tatsuishi, Titov, Trautner, Uemura, Varzielas, Vaudrevange, Wang, Yao, Yu, Zhang, Zhou...

Summary

- Flavour symmetries are a useful tool to understand the origin flavor mixing and CP violation, but no compelling and unique picture have emerged so far.
- More precise neutrino data calls for convincing model of neutrino masses and mixings, with testable and confirmed predictions. Modular symmetry is a new promising approach to the flavor puzzles. Modular symmetry is still at the early stage of its development, many aspects still need to be understood.
- Future experimental data on θ_{23} , δ_{CP} , the effective Majorana mass $m_{\beta\beta}$ can exclude many models, will provide important hints for the underlying principle.