

ALICE measurements of inclusive untagged and heavy flavor-tagged jets in pp, p-Pb and Pb-Pb collisions

Artem Isakov, NPI CAS for the ALICE Collaboration

Jets

- Jet collimated spray of particles, created during fragmentation of guark or gluon after hard scattering
- Defined via IRC safe algorithms (anti- k_{T} , Cambridge/Aachen, k_{T})
- Well understood theoretically in pQCD for pp collisions
- Heavy Flavour jets are initiated by a heavy quark $(m_{a} > \Lambda_{QCD}) \rightarrow$ perturbative production down to low jet p_{τ}

2

Artem Isakov

Jets

- Jet collimated spray of particles, created during fragmentation of quark or gluon after hard scattering
- Defined via IRC safe algorithms (anti- k_{T} , Cambridge/Aachen, k_{T})
- Well understood theoretically in pQCD for pp collisions
- Heavy Flavour jets are initiated by a heavy quark $(m_q > \Lambda_{QCD}) \rightarrow$ perturbative production down to low jet p_T

p-p

Test of the pQCD predictions Reference for p-Pb and Pb-Pb

p-Pb

Study of the cold nuclear matter effects (CNM) nPDFs, Cronin effect, ...

Pb-Pb

In-medium energy loss: jet quenching for quark and gluon jets

Jets in ALICE

EMCal:

• Triggering on high- p_{T} γ , e^{+} , and jets

VZERO:

- scintillator arrays at forward and backward η
- triggering

Time Projection Chamber:

- Space-time points for tracking
- Particle identification via d*E*/dx

Inner Tracking System:

- Space-time points for tracking
- Primary and secondary vertex reconstruction

Tracking and EMCal acceptance:

- $|\eta_{\text{track}}| < 0.9$
- Tracking in full azimuth
- *p*_{T, track} > 0.15 GeV/*c*
- $|\eta_{\text{EMCal}}| < 0.7, \ \phi < 110^{\circ}$

Jet reconstruction:

- anti- $k_{\rm T}$ charged particle jet
- *R* = 0.2–0.6
- $|\eta_{\rm jet}| < 0.9 R$

Artem Isakov

PANIC 2021, Lisbon Portugal

ALICE

Overview

- 1) Production of b-jets in pp and p-Pb @ $\sqrt{s_{NN}}$ = 5.02 TeV
- 2) Radial profile of D⁰ and Λ_c^+ hadrons in jets in pp @ \sqrt{s} = 13 TeV
- 3) Substructure of D⁰-tagged jets and dead-cone measurement in pp @ \sqrt{s} = 13 TeV
- 4) Subjet fragmentation in pp and Pb-Pb @ $\sqrt{s_{NN}}$ = 5 TeV

Methods to tag b-jets

Two independent methods were used for b-jet tagging

- 1) Impact parameter distance of closest approach of jet constituents to primary vertex
- 2) Secondary vertex (SV) properties of the most displaced 3-prong secondary vertex

- Minimal significance of the SV displacement: $SL_{xy} = L_{XY} / \sigma_{Lxy}$ L_{XY} – distance between primary and secondary vertices σ_{Lxy} – uncertainty of L_{XY} measurement
- Upper limit on the SV resolution: $\sigma_{sv} = \sqrt{\sum_{i=1}^{3} d_i^2}$

 d_i – distance of closest approach of *i*-th prong to the SV

Default SV cut: $\sigma_{sv} < 0.03$ cm, $L_{xy}/\sigma_{Lxy} > 7$

b-jets in minimum bias pp and p-Pb collisions

The measured b-jet production cross section reproduced with POWHEG+PYTHIA

Artem Isakov

b-jet fraction in pp and *R*_{pl}

The measured b-jet fraction is compatible with the POWHEG prediction

Nuclear modification factor compares particle yield measured in p-Pb with the yield from the corresponding number of independent pp collisions:

$$R_{\rm pPb}^{\rm b \, jets} = \frac{1}{A} \frac{{\rm d} \, \sigma_{\rm pPb}^{\rm b \, jet} / {\rm d} \, p_{\rm T, \, ch \, jet}}{{\rm d} \, \sigma_{\rm pp}^{\rm b \, jet} / {\rm d} \, p_{\rm T, \, ch \, jet}}$$

where *A* is the number of nucleons in the Pb nucleus

CNM effects in p–Pb smaller than current resolution

Artem Isakov

CMS measured full anti- k_{T} R =0.3 b-jets with -2.5 < η_{iet} < 1.5

Comparison of radial profile of D^0 and Λ_c^+ in jets in pp

Distribution of the radial distance between the hadron and the jet axis

$$r = \sqrt{(\varphi_{jet} - \varphi_{HF})^2 + (\eta_{jet} - \eta_{HF})^2}$$

 $\varphi_{\rm jet},\varphi_{\rm HF}$ - azimuthal angles of jet and HF hadron $\eta_{\rm jet},\eta_{\rm HF}$ - pseudorapidity of jet and HF hadron

• Λ_{c}^{+} produced closer to the jet axis than D⁰

PYTHIA 8 Monash tune describes results better than PYTHIA 8 SoftQCD with color reconnection

Artem Isakov

Substructure of groomed D⁰-jets and untagged jets in pp

Study jet shower via unwinding history of the clusterization process

Soft radiation at large angles is groomed away from jet shower with **Soft Drop** (SD) condition:

 $z < z_{\rm cut} \theta^{\beta}$

Momentum fraction of subleading prong:

comparison to untagged jets.

Artem Isakov

Substructure of groomed D⁰-jets and untagged jets in pp

Angular distance R

D⁰-jets and untagged jets consistent within uncertainties

$$\frac{+\Delta \varphi^2}{2} \rightarrow \text{jet resolution parameter}$$

Number of splittings satisfying SD

 Fewer splittings passed SD condition in D⁰-jets than in untagged jets.

Result of harder fragmentation of the charm quark

- difference between quark and gluon jets
- dead-cone effect

Artem Isakov

 $\theta_a \equiv \cdot$

PANIC 2021, Lisbon Portugal

ALICE

Manifestation of the dead-cone effect for D⁰-tagged jets

Dead-cone effect: suppression of gluon emission phase space for $\theta < \theta_{DC} = m_a/E_a \rightarrow \text{mass effects at low } p_T$

Artem Isakov

Subjet fragmentation in pp and central Pb-Pb collisions

Constituents of inclusive jet with radius \mathbf{R} reclustered with anti- k_{T} algorithm to a subjet with radius $\mathbf{r} < \mathbf{R}$.

Subjet measurements:

- Jet quenching effect for q jets vs g jets
- Test of universality of jet fragmentation function parton \rightarrow hadron vs parton \rightarrow subjet

Artem Isakov

PANIC 2021, Lisbon Portugal

12

Subjet fragmentation in pp and central Pb-Pb collisions

- Intermediate *z*_r:
 - Gluon suppression \rightarrow larger z_r
 - Soft radiation \rightarrow smaller z_r
- Large z_r: region depleted by soft medium induced with gluon emission → purely quark jets

First subjet fragmentation measurement in QGP medium

Artem Isakov

Artem Isakov

PANIC 2021, Lisbon Portugal

13

Summary

- Heavy-flavor jet tagging extends accessibility of perturbative QCD regime to low jet p_{T}
- The ALICE measurement of charged b-jet R_{pPb} at $\sqrt{s_{NN}}$ = 5 TeV is compatible with unity
- Dead-cone effect is observed in pp collisions and it is seen to affect jet substructure
- Subjet fragmentation functions in Pb-Pb are affected by jet quenching

Outlook:

- Run3 will start next year
- ≻ New Inner Tracking System → improved capability for the HF tracking
- ALICE ready to take 100x larger luminosity w.r.t. Run 1 + Run 2

