

Results on exclusive $\rho(770)$ photoproduction and

on collectivity in small systems obtained in ep collisions at HERA

Guillermo Contreras Czech Technical University in Prague

On behalf of the H1 Collaboration

Online, September 8, 2021

HERA and H1

2

HERA and H1

2

Exclusive p(770) photoproduction

H1 Collaboration, EPJC 80 (2020) 12, 1189 https://doi.org/10.1140/epjc/s10052-020-08587-3

QCD is in here. This is what we want to understand better!

t is related, through a Fourier transform, to the structure of the hadron in the impact-parameter plane.

QCD is in here. This is what we want to understand better!

t is related, through a Fourier transform, to the structure of the hadron in the impact-parameter plane.

The processes we are interested in: dissociative production

The processes we are interested in: dissociative production

In a Good-Walker picture, this process is sensitive to the fluctuations in the hadronic structure of the proton

Invariant mass distribution of pion pairs

Invariant mass distribution of pion pairs

Invariant mass distribution of pion pairs

Parameter	$m_Y = m_p$	$m_Y = m_p$			$m_p < m_Y < 10 \text{ GeV}$		
	Value	$\Delta_{\text{stat.}}$	$\Delta_{\text{syst.}}$	Value	$\Delta_{\text{stat.}}$	$\Delta_{ m syst.}$	
$\sigma_{\rho}(W_0=40 \text{ GeV}) \ (\mu b)$	10.98	0.07	$+0.72 \\ -0.74$	4.62	0.06	$+0.59 \\ -0.57$	
δ	0.171	0.009	$+0.039 \\ -0.026$	-0.156	0.026	$+0.081 \\ -0.079$	

Parameter	$m_Y = m_p$			$m_p < m_Y < 10 \text{ GeV}$		
	Value	$\Delta_{\text{stat.}}$	$\Delta_{\text{syst.}}$	Value	$\Delta_{\text{stat.}}$	$\Delta_{ m syst.}$
$\sigma_{\rho}(W_0=40 \text{ GeV}) \ (\mu b)$	10.98	0.07	$+0.72 \\ -0.74$	4.62	0.06	$+0.59 \\ -0.57$
δ	0.171	0.009	$+0.039 \\ -0.026$	-0.156	0.026	$+0.081 \\ -0.079$
			7		Negative!	

Parameter	$m_Y = m_p$	
	Value	$\Delta_{\text{stat.}}$
$\sigma_{\rho}(W_0=40 \text{ GeV}) \ (\mu b)$	10.98	0.07
δ	0.171	0.009

Parameter	$m_Y = m_p$			$m_p < m_Y <$	$m_p < m_Y < 10 \text{ GeV}$		
	Value	$\Delta_{\text{stat.}}$	$\Delta_{\text{syst.}}$	Value	$\Delta_{\text{stat.}}$	$\Delta_{ m syst.}$	
$d\sigma_{\rho}/dt(t=0) \ (\mu b/GeV^2)$	97.3	1.2	+6.3 -6.3	19.5	0.7	$^{+3.0}_{-2.9}$	
$b (\text{GeV}^{-2})$	9.61	0.15	$+0.20 \\ -0.15$	4.81	0.24	$+0.39 \\ -0.37$	
a	20.4	3.7	+6.8 -5.1	8.5	1.7	$^{+2.7}_{-2.1}$	

Parameter	$m_Y = m_p$			$m_p < m_Y <$: 10 GeV			
	Value	$\Delta_{\text{stat.}}$	$\Delta_{\text{syst.}}$	Value	$\Delta_{\text{stat.}}$	$\Delta_{ m syst.}$		
$d\sigma_{\rho}/dt(t=0) \ (\mu b/GeV^2)$	97.3	1.2	+6.3 -6.3	19.5	0.7	$^{+3.0}_{-2.9}$		
$b (\text{GeV}^{-2})$	9.61	0.15	$^{+0.20}_{-0.15}$	4.81	0.24	$+0.39 \\ -0.37$		
a	20.4	3.7	+6.8 -5.1	8.5	1.7	$^{+2.7}_{-2.1}$		

Parameter	$m_P = m_p \qquad \qquad m_P < m_Y < 10 \text{ GeV}$			< 10 GeV	V	
	Value	$\Delta_{\text{stat.}}$	$\Delta_{ m syst.}$	Value	$\Delta_{\text{stat.}}$	$\Delta_{ m syst.}$
$d\sigma_{\rho}/dt(t=0) \ (\mu b/GeV^2)$	97.3	1.2	+6.3 -6.3	19.5	0.7	$^{+3.0}_{-2.9}$
$b (\text{GeV}^{-2})$	9.61	0.15	$^{+0.20}_{-0.15}$	4.81	0.24	$+0.39 \\ -0.37$
a	20.4	3.7	+6.8 -5.1	8.5	1.7	+2.7 -2.1

Many more results in the paper (eg Regge analysis)

Collectivity in small systems: ep collisions

H1 Collaboration, H1prelim-20-033 https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-20-033.long.html

Short range correlations: jets, resonances, ...

-2

2

0

DU

HCM

Long-range pseudorapidity correlation

Long-range pseudorapidity correlation

Long-range pseudorapidity correlation

Use 4-particle cumulants: a negative C₂{4} is considered to be a signature of collectivity

Results: cumulants

Results: cumulants

Use 4-particle cumulants: a negative $C_2{4}$ is considered to be a signature of collectivity

Results: cumulants

Use 4-particle cumulants: a negative $C_2{4}$ is considered to be a signature of collectivity

Results: cumulants

Use 4-particle cumulants: a negative $C_2{4}$ is considered to be a signature of collectivity

$C_2{4}$ is compatible with zero \rightarrow no sign of collectivity

Summary

The diffractive photoproduction of p vector mesons has been studied in detail The exclusive and dissociative components have been measured as a function of energy and [t]

The diffractive photoproduction of p vector mesons has been studied in detail The exclusive and dissociative components have been measured as a function of energy and [t]

A measurement of particle correlations yield flow coefficients that can be described with the RapGap MC The cumulant C₂{4} is compatible with zero These results imply that no collective effects are needed to explain the ep data in the DIS and photoproduction regimes

The diffractive photoproduction of p vector mesons has been studied in detail The exclusive and dissociative components have been measured as a function of energy and [t]

A measurement of particle correlations yield flow coefficients that can be described with the RapGap MC The cumulant C₂{4} is compatible with zero These results imply that no collective effects are needed to explain the ep data in the DIS and photoproduction regimes

Even though HERA stopped in 2007, H1 data is still being explored and yielding new physics results

