Search for heavy resonances at the LHC

PANIC 2021 conference

Dominik Duda

8th September 2021

Searches for heavy resonances:

Events

- Focus: Searches for a (heavy) resonance X decaying into X_1 and X_2 (with $X_1/X_2 = \gamma$, Z, W, H, A, h, q, ℓ , ...)
 - Searches are performed for different production modes
 - Targeting diverse sets of final states:
 - Multi-lepton
 - Di-photon
 - Di-tau
 - Lepton + jets
 - b-jets
 - multi-jets
- Most analyses are designed to perform (quasi)
 model-independent searches for a bump in a
 smoothly falling mass spectrum
 - Interpretations in generic frameworks:
 - Extended Higgs sector:
 - Two Higgs Doublet Model (2HDM)
 - Other generic frameworks:
 - Heavy Vector Triplet (HVT) models
 - RS Extra-dimensional models

2

m [GeV]

Boosted topologies:

- Decay products of boosted particles tend to be collimated
- For $p_T^W > 200$ GeV and $p_T^{Higgs} > 300$ GeV decay products tend to have an angular separation smaller than 0.8
 - $\circ \quad \mbox{Partonic structure of decays can no longer be sufficiently} \\ \mbox{described by $R=0.4$ jets}$
 - Use R=1.0 jets instead

Reconstruction of boosted bosons in ATLAS:

Use trimmed R = 1.0 jets: ATL-PHYS-PUB-2020-019 ATLAS Simulation Preliminary W/Z tagging: Ο $\sqrt{s} = 13 \text{ TeV}$ $D_{\rm Xbb}, f_{\rm top} = 0.25$ m_{τ} window requirement Multijet Rejection 2 VR DL1r $D_{2}^{J(\beta=1)}$ requirement 2 VR MV2 2 R = 0.2 MV2(N²trks</sup> requirement) Preselection $|n_1| < 2.0$ **Higgs tagging:** Ο $p_{T}^{J} > 500 \, \text{GeV}$ 76 < m_i/GeV < 146 ■ VR track jets Ratio to MV2 m₁ window requirement Higgs tagging DNN (p_T , η , DL1r scores) 0.7 0.6 0.8 0.9 1.0 **Higgs Efficiency** $D_2^{(\beta)} = \frac{e_3^{(\beta)}}{(e_2^{(\beta)})^3}$ New D_{xbb} tagger significantly improves our ability to identify Higgs jets $e_2^{(\beta)} = \frac{1}{p_{TJ}^2} \sum_{1 \le i < j \le n_J} p_{Ti} p_{Tj} R_{ij}^{\beta} ,$ $e_3^{(\beta)} = \frac{1}{p_{TJ}^3} \sum_{1 \le i < j < k \le n_J} p_{Ti} p_{Tj} p_{Tk} R_{ij}^{\beta} R_{ik}^{\beta} R_{jk}^{\beta}$

Reconstruction of boosted bosons in CMS:

- Use groomed (via SoftDrop) R = 0.8 jets:
 - W/Z/H tagging:
 - **Cut based:** Requirements on m_J window and ratio of N-subjettiness τ_{21}
 - DeepAK8: Multiclass classifier for the identification of hadronically decaying particles with five main categories (W/Z/H/t/others) using four-vectors and other properties of pflow objects

• N-subjettiness:

$$\tau_N = \frac{1}{d_0} \sum_{i} p_{\mathrm{T},i} \min \left[\Delta R_{1,i}, \Delta R_{2,i}, \dots, \Delta R_{N,i} \right]$$

Some Recent searches for heavy resonances by ATLAS and CMS

• Searches for di-boson resonances:

- $X \rightarrow$ Wh by ATLAS and CMS (<u>ATLAS-CONF-2021-026</u>, <u>CMS-PAS-B2G-19-002</u>)
- $X \rightarrow W\gamma$ and $X \rightarrow Z\gamma$ by ATLAS and CMS (<u>ATLAS-CONF-2021-041</u>, <u>arXiv::2106.10509</u>)

• Searches for di-quark resonances:

- X \rightarrow tb by ATLAS and CMS (ATLAS-CONF-2021-043, *Phys. Lett. B* 820 (2021) 136535)
- $X \rightarrow bb by ATLAS and CMS (CMS-PAS-EXO-20-008, arXiv:2108.09059)$

• Searches for vector-like quarks:

- Search for vector-like *B*-quarks by ATLAS (ATLAS-CONF-2021-018)
- Search for vector-like *T*-quarks by ATLAS and CMS (<u>ATLAS-CONF-2021-040</u>, <u>CMS-PAS-B2G-19-004</u>)
- Search for vector-like quark pairs by ATLAS (<u>ATLAS-CONF-2021-024</u>)
- Search for a W' decaying to a vector-like quark and a t- or b-quark by CMS (CMS-PAS-B2G-20-002)

• Others:

- Search for resonances decaying to triple W-boson by CMS: (B2G-20-001, B2G-21-002)
- Search for an excited b-quark decaying via $b^* \rightarrow tW$ by CMS: (CMS-PAS-B2G-20-010)
- Search for a right-handed W boson and heavy neutrino by CMS: (CMS-PAS-EXO-20-002)
- Search for heavy leptons by ATLAS: (ATLAS-CONF-2021-023)

Searches for di-boson resonances

Search for resonances in $X \rightarrow Wh$ **decays:**

di Data

Top

W+hf

W+hl. W+l

TLAS Preliminary

= 13 TeV, 139 fb

Z+hf

Other

Z+hl. Z+l

Uncertainty

8

- **Probe resolved and merged** $\{vbb \ (\ell = \mu, e) \text{ final states} \}$
- **Analysis strategy:**
 - Search for bumps in m_{hybh} spectra 0
 - Simultaneous fit of all 4 event categories: (resolved, merged) \times (1-tag, 2-tag) Ο

Dominant uncertainties:

- Modelling of backgrounds (top bkg. ME +PS) Ο
- Large-R jets (mass resolution) Ο

Run: 363710 Event: 2531279786 2018-10-17 00:13:37 CEST

 $W' \rightarrow Wh \rightarrow \ell vbb candidate$

Search for resonances in $X \rightarrow WW, WZ$ and Wh decays:

- Probe merged lvqq ($l = \mu$, e) final states
- Analysis strategy:
 - Search for bumps in $m_{\ell vqq}$ spectra
 - Simultaneous 2-dimensional fit of the (m_{qq}, m_{lvqq}) distribution in 24 categories
 - $(\mu, e) \times (HP, LP) \times (VBF, bb-tagged, others) \times (LDy, HDy)$
 - High and low purity (HP & LP) regions based on τ_N cut
 - Use low and high rapidity regions (LDy and Hdy)
 - \circ $\,$ 2d probability density functions are build for signal and bkg.

• Dominant syst. unc. :

- V-tagging
- Double-b tagging
- Bkg modelling

Searches for Vy diboson resonances

- Search for resonances in (merged) qqy final states performed by ATLAS and CMS
 - Probe for particles with spin 0, 1 or 2 hypothesis
 - Include searches for $X \rightarrow W\gamma$ and $X \rightarrow Z\gamma$ resonances

 $\begin{array}{ll} \sqrt{s} = \textbf{13 TeV} & \sqrt{s} = \textbf{13 TeV} \\ \mathcal{L} = \textbf{36.1 fb}^{-1} & \mathcal{L} = \textbf{139 fb}^{-1} \end{array}$

*small-radius (large-radius) jets are used in resolved (boosted) events

[†]with $\ell = \mu$, e

ATL-PHYS-PUB-2021-018

Searches for di-quark resonances

Searches for $X \rightarrow tb$ resonances by ATLAS and CMS

14

Searches for $X \rightarrow bb$ resonances by ATLAS and CMS

- Search for a heavy vector boson
 - $\circ \quad \text{Decay: } \mathbf{Z'} \to \mathbf{bb}$
 - Predicted by: Compositeness models, extra-dimensional models etc.

CMS-PAS-EXO-20-008

- Search for a heavy vector boson
 - Production mode **bbZ'**
 - $\circ \quad \text{Decay: } \mathbf{Z'} \rightarrow \mathbf{bb}$

Searches for vector-like quarks

Searches for vector-like quarks by ATLAS and CMS

• Vector-like quarks (VLQ):

- Hypothetical spin 1/2 particles
- Left and right handed components have the same electroweak quantum numbers
- Predicted by e.g. Little Higgs or Composite Higgs models

- Search for single vector-like *B*-quark production
 - Signature: Large-R jet + b-jet + light-flavour jet

Searches for single vector-like quarks

136 fb⁻¹ (2016+2017+2018,13 TeV) ATLAS search in final states with a **single** → tZbq) [pb] lepton + multiple jets CMS Preliminary Median expected 68% expected 95% expected σ (NLO), Singlet T, $\Gamma/M=0.3$ \rightarrow Ht/Zt)) [pb] - pq Theory (NLO) 95% CL observed limit 95% CL expected limit d b 0 0 95% CL expected limit $\pm 1\sigma$ 95% CL expected limit $\pm 2\sigma$ T singlet, κ =0.8 $\sigma(pp \rightarrow qb(T$ 10^{-2} CMS-PAS-B2G-19-004 1.1 1.2 1.3 0.9 1.5 $m_{\rm T}$ [TeV] 10⁻¹ H/ZCMS search in final **ATLAS** Preliminary states with **multiple** $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ jets and $E_{\rm \scriptscriptstyle T}^{\rm miss}$ 1000 1200 2000 1400 1600 1800 m_⊤ [GeV] ATLAS-CONF-2021-040 18

Searches for vector-like quarks by ATLAS and CMS

• Search for a W' decaying to a vector-like quark and a top or bottom quark:

• Signature: 2 large-R jets + b-jet

Other resonance searches

- Triboson cascades
- Excited quarks
- Heavy leptons

Search for resonances decaying to triple W-boson final states:

Search for resonances decaying to triple W-boson final states:

• Search for cascade decays leading to merged qqqqqq final states

Expected and observed upper limits at 95% CL on the product cross section of the signal from combining the all-hadronic and single-lepton searches.

Searches for excited quarks and right handed W bosons

Searches for heavy leptons

- Searches for heavy charged and neutral leptons (L[±] and N^o)
 - Signature:
 - Three charged leptons + E_T^{miss}
 - Four charged leptons + 2 jets
 - Analysis strategy:
 - Define various signal regions based on N^{lep}, N^{jets} and m_p
 - Simultaneous fits to the mT and (H_T +E_T^{miss}) distributions[™] for the three- and four-lepton channels in all signal regions

ATLAS-CONF-2021-023

Concluding remarks:

- Many interesting searches for new (heavy) resonances are ongoing within ATLAS and CMS
 - Presented only a few highlights of available results.
 - Additional results can be found via the <u>ATLAS</u> and <u>CMS</u> publication pages
 - No significant hint for physics beyond the SM has been observed so far
 - Many results based on the full Run-2 data set are expected in the next month/years

Back-up

Search for $X \rightarrow hh$ resonances (ATLAS)

Search for resonances decaying via:

- $X \rightarrow hh \rightarrow bbbb$
- Signature: 4 small-R jets or 2 large-R jets

Search for resonances decaying via:

- $X \rightarrow hh \rightarrow bbe\tau_h$
- $X \rightarrow hh \rightarrow bb\mu\tau_h$
- $X \rightarrow hh \rightarrow bb\tau_h \tau_h$
- Signature: 1 (0) Leptons + 3 (4) small-R jets

More information on hh resonance searches can be found in the presentation by <u>Tiesheng</u>

Search for $X \rightarrow hh$ resonances (CMS)

Search for resonances decaying via:

- $X \rightarrow hh \rightarrow bbbb$
- Signature: 2 large-R jets

Search for resonances decaying via:

- $X \rightarrow hh \rightarrow bbWW^* \rightarrow bb\ell vqq$
- $X \rightarrow hh \rightarrow bbWW^* \rightarrow bb\ell \nu \ell \nu$
- $\bullet \quad X \to hh \to bb\tau\tau \to bb\ell\nu\nu\ell\nu\nu$
- Signature: Leptons + E_T^{miss}+1 large-R jets

28

Search for resonances in $X \rightarrow hh \rightarrow bbbb$ **decays:**

- Search for resolved and merged bbbb final states
- **Analysis strategy:**
 - Resolved/Boosted events are classified into the SR/VR/CR based on their m_{H_1} and m_{H_2} values Ο
 - Probe for bumps in m_{bbbb} spectra Ο
 - Train neural network for background estimation Ο
 - Extrapolate background distribution from CRs to SR

Dominant systematic uncertainties:

- Background m_{HH} shape Ο
- Jet momentum/mass resolution Ο

√s = 13 TeV, 139 fb⁻

Data, 2b-1f Category

Search for high-mass Wy and Zy resonances:

- Search for resonances in (merged) qqy final states
 - Probe for particles with spin 0, 1 or 2 hypothesis
- Analysis strategy:
 - Split events in several non-overlapping signal regions
 - Use parametric fit function to describe background:

$$\mathcal{B}(m_{J\gamma}; p) = (1 - x)^{p_1} x^{p_2 + p_3 \log(x)}$$
 wit

ith:
$$x = m_{J\gamma}/\sqrt{2}$$

• The signal is modeled with a double-sided crystal ball function

• Dominant systematic uncertainties:

- Jet mass/energy scale
- Jet energy resolution

ATLAS-CONF-2021-041

Search for resonances in $X \rightarrow Wy$ decays:

- Search for resonances in (merged) qqy final states
 - Probe for particles with spin 0 or 1 hypothesis
- Analysis strategy:
 - Use parametric fit function to describe background:

 $\frac{dN}{dm} = p_0 (m/\sqrt{s})^{p_1 + p_2 \log(m/\sqrt{s}) + p_3 \log^2(m/\sqrt{s})}$

• The signal is modeled with the sum of a Crystal Ball function and Gaussian functions

• Dominant systematic uncertainties:

- \circ W-tagging
- Photon reconstruction and identification

Search for doubly and singly charged Higgs bosons:

- Probe multi-lepton final states (2^{lSC}, 3^l, 4^l)
- Analysis strategy:
 - Define signal regions (angular distances, invariant masses)
 - Probe for excess of observed signal region yields
 - Simultaneous fit of the three signal regions

• Dominant systematic uncertainties:

- Non-prompt lepton estimation
- MC statistics

Predicted in Higgs triplet models (needed for e.g. type-II seesaw mechanism)

Search for new particles in $X \rightarrow ZZ$, ZH, ZW events:

137 fb⁻¹ (13 TeV

Data

Z۷

Z(II) + jets

tī tW WW Bkg. unc. ALP ZH (x10)

CMS

Entrie

Preliminary Resolved Taggeo

- Probe resolved and merged $\{\ell j j (\ell = \mu, e) \}$ final states
- Analysis strategy:
 - Search for bumps in $m_{\eta_{ij}}$ spectra (or excesses in the tails)
 - To probe for new physics in resonant and non-resonant ZZ, ZH, ZW production
 - Simultaneous fit of all 8 event categories:
 - $(\mu\mu, ee) \times (resolved, merged) \times (tagged, untagged)$

Search for resonances in $H \rightarrow hh_s \rightarrow bb\tau\tau$ decays:

Search for fermiophobic charged Higgs bosons:

- Search for same-sign {v{vjj and {v{ljj (l = μ, e) final states
- Analysis strategy:
 - Estimate non-prompt lepton bkg. from data (crucial for {v{v channel})
 - Probe m_T and m_{fyff} distributions for bumps

• Dominant systematic uncertainties:

- $\circ \quad \text{Lepton reconstruction/identification} \\$
- \circ $\;$ Background modelling (W[±]W[±] and WZ) $\;$

Predicted in e.g. Higgs triplet models