

Searches for Axion-Like Particles, or ALPs

Collaborations

8th September 2021. PANIC (Lisbon)

Adrián Casais Vidal (IGFAE) on behalf of the ATLAS, CMS, Belle II, BaBar, NA62, NA64 and LHCb

Axion Like Particles

- ALPs are pseudo Nambu-Goldstone bosons associated to • Spontaneous Symmetry Breaking
 - Appear in many BSM models •
- ALPs may couple to different sectors of the SM
- Considering the ALPs energy scale f_a lies beyond the EW scale:

 $f_a > > v$ effective interactions to the SM:

Coupling to gauge sector: gluons, photons Z and W •

$$\mathscr{L}_{\text{eff}} \supset \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2 + \frac{a}{f} \sum_{i=1}^3 c_i \frac{\alpha_i}{4\pi} F_{i,\mu\nu} \tilde{F}_i^{\mu\nu}$$

• Where the decay widths to photons and gluons depend on $N(c_3)$ and $E(c_1, c_2)$: **T**? **N**72-...2 2

$$\Gamma_{\gamma\gamma} = \frac{\alpha_{\rm em} E^2 m_a^2}{64\pi^3 f_a^2}, \ \Gamma_{gg} = \frac{\alpha_{\rm s} N^2 m_a^2}{8\pi^3 f_a^2}$$

- Couplings to the Z and W vector bosons also considered
- Interactions with fermion sector and Higgs sector also possible
 - Chiral expansion realisations favor coupling to Higgs [Phys.Rev.Lett. 124 (2020) 5, 051802]

 $\cdot pp \rightarrow a^* \rightarrow ZH, ZV$ • Pb Pb $\rightarrow a \rightarrow \gamma \gamma$

 $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$

 $pp \rightarrow a \rightarrow \gamma \gamma$

Adrián Casais Vidal (IGFAE) - PANIC (2021)

 $K^+ \to \pi^+ a, a \to \text{ invisible}$

• $e^-Z \rightarrow a \rightarrow \gamma \gamma$ • $e^-Z \to X \to \text{invisible}$ $\cdot e^{-}Z \rightarrow a \rightarrow e^{+}e^{-}$

 $B \to Ka, a \to \gamma \gamma$

ATLAS: jet + E_T^{miss} [Phys. Rev. D 103 (2021) 112006]

- Dataset
 - Run 2 data: 139 fb^{-1}
 - $\cdot \sqrt{s} = 13 \text{ TeV}$
- Search for a ALP + gluon jet production
- Signature of an ALP exiting the detector + gluon jet:
 - Jet with $p_T > 150 \text{ GeV}$ •
 - $E_T^{\text{miss}} > 200 \text{ GeV}$ (mapped in inclusive bins)
- Event selection:
- Veto events with e, μ tracks and hadronic τ mesons and γ Main backgrounds:
 - \cdot Z + jets
 - W + jets
 - $t\bar{t}$ •
- Simultaneous fit to the p_T^{recoil} (proxy for E_T^{miss} quantity)
 - Signal regions + control regions with electrons and muons
- Z + jets and W + jets events reweighted
 - Higher order corrections (NNLO QCD + NLO electroweak)

ATLAS: $\gamma + E_T^{\text{miss}}$ [JHEP 02 (2021) 226]

Dataset:

•

•

•

- Run 2 data: 139 fb^{-1}
- $\cdot \sqrt{s} = 13 \text{ TeV}$
- Signature of an ALP produced w. γ
- $E_{\tau}^{\gamma} > 150 \text{ GeV}$
 - Both unconverted and converted photons •
- $E_T^{\text{miss}} > 200 \text{ GeV}$ (mapped in inclusive bins)
- Events with leptons (e, μ, τ) are vetoed •

Backgrounds:

- Processes with isolated photons + E_T^{miss} •
 - $Z(\rightarrow \nu \bar{\nu})\gamma$
- Processes with jets misidentified as photons: •
 - $\cdot \gamma + jets$
 - Z/W + jets•
- Processes with leptons
 - $\cdot \quad W(\rightarrow \ell \nu) \gamma$
 - $\cdot \quad Z(\to \ell\ell)\gamma$

ATLAS: jet + E_T^{miss} and $\gamma + E_T^{miss}$ [Phys. Rev. D 103 (2021) 112006]

Limits on $c - f_a$ plane for $m_a = 1$ MeV for both analyses Upper limits:

- Simultaneous likelihood fit to control and signal regions and CL_s prescription
 - Fit performed in bins of E_T^{miss} for better sensitivity
- Limit at $f_a = 1$ TeV, very small mass dependence: •
 - $c_{\tilde{G}}/f_a < 8 \times 10^{-6}$ for $m_a \in [1 \text{ MeV}, 1 \text{ GeV}]$
 - $c_{\tilde{W}}/f_a < 1.2 \times 10^{-4}$ for $m_a \in [1 \text{ MeV}, 1 \text{ GeV}]$
- f_a exclusion scales linearly with $c_{\tilde{G}}/c_{\tilde{W}}$ according to cross-section re-scaling • ALP EFT invalid for $\sqrt{\hat{s}} > f_a$:
 - $\sqrt{\hat{s}}$ correlated to higher E_T^{miss} events
 - Suppressing weighting factor for events out of this bound: f_a^4/\hat{s}^2
 - $\gamma + E_T^{m_{1SS}}$: negligible
 - jet + E_T^{miss} : yield reduction $\mathcal{O}(5\%)$ for $f_a = 2 \text{ TeV}$
 - Negligible already at $f_a = 3 \text{ TeV}$ •

CMS: non resonant $pp \rightarrow a^* \rightarrow ZH, ZV [CMS-B2G-20-013]$

- Dataset:
 - 137 fb^{-1} of Run 2 data: 2016-2018
 - $\cdot \sqrt{s} = 13 \text{ TeV}$
- Signature:
 - $\cdot Z \rightarrow \ell^+ \ell^-$
 - Merged J or resolved jj di-jet
- Search for ALP mediated production of
 - Z boson + Higgs (chiral model)
 - Z boson + Z boson (linear model)
- Main background:
 - $\cdot Z + jets$
- Details about the signal modes [Phys.Rev.Lett. 124 (2020) 5, 051802]

Adrián Casais Vidal (IGFAE) - PANIC (2021)

CMS: non resonant $pp \rightarrow a^* \rightarrow ZH, ZV [CMS-B2G-20-013]$

- Combined maximum likelihood fit to the mass distribution
- Exclusion region on the $c_i c_j f_a$ plane for the chiral and linear models
 - 95% CL limits obtained using CL_s method
 - $f_a > 3$ TeV excluded extrapolating $f_a = 3$ TeV point linearly
- $m_a < 100 \text{ GeV}$: region where cross-section diverges by less than 10%
- Limits on c_i/f_a :
 - $|c_{\tilde{G}}c_{\tilde{Z}}|/f_a^2 < 0.0415(0.0400) \text{ TeV}^{-2}$
 - $|c_{\tilde{G}}\tilde{a}_{2D}|/f_a^2 < 0.0269(0.0281) \text{ TeV}^{-2}$

• Energy dependance only valid for $m_{ZH,ZV} = \sqrt{\hat{s}} < f_a$

- Same argumentation as in the ATLAS searches
- More ATLAS and CMS results for Higgs coupling interpretation:
 - ATLAS:
 - $H \to Za$ [Phys. Rev. Lett. 125 (2020) 221802]
 - $H \to aa \to 4b$ [Phys. Rev. D 102 (2020) 112006]
 - $H \rightarrow aa \rightarrow 2b2\mu$ [ATLAS-CONF-2021-009]
 - CMS
 - $H \to Za$ [Eur. Phys. J. C 81 (2021) 13]

Adrián Casais Vidal (IGFAE) - PANIC (2021)

ATLAS and CMS: Searches in PbPb collisions

- Dataset of ultraperipheral PbPb collisons at $\sqrt{s} = 5.02$ TeV
 - CMS: 390 μb^{-1}
 - ATLAS: 2.2 nb^{-1}
- Very similar selection of $a \rightarrow \gamma \gamma$ for both experiments
 - $E_T^{\gamma} > 2 \text{ GeV}$ (unconverted photons)
 - $|\eta| \leq 2.4$ (forward)
 - $m_{\gamma\gamma} > 5 \text{ GeV} (\text{reduce } e^+ e^-)$
 - $p_T^{\gamma\gamma} \lesssim 1 \text{ GeV}$ (ensure exclusive production)
 - Low general activity in the detector
- Backgrounds:
 - QED e^+e^- production
 - $CEP \gamma\gamma$ •

Adrián Casais Vidal (IGFAE) - PANIC (2021)

[JHEP03(2021)243] [Phys.Lett.B 797 (2019) 134826]

CMS: Searches in PbPb collisions [Phys.Lett.B 797 (2019) 1

- Cross section upper limits:
 - CL_s prescription with profile likelihood ratio at 95 % CL
- Cross section limits interpreted as limits on the ALP couplings:
 - ALPs only coupling to photons: $g_{a\gamma,aF\tilde{F}}$
 - ALPs coupling also to Z: $g_{a\gamma,aB\tilde{B}}$

ATLAS: Searches in PbPb collisions [JHEP03(2021)243]

- Cross section upper limits:
 - CL_s prescription with profile likelihood ratio at 95 % CL
- Cross section limits interpreted as limits on the ALP couplings:
 - ALPs only coupling to photons

LHCb [JHEP 01 (2019) 113]

- Light ALPs not reachable for ATLAS and CMS
- Current **best limits** in mass gap done with 80 pb^{-1} of public LHCb data
 - Existing trigger for $B_{_S}
 ightarrow \gamma\gamma$. Analysis similar and could be done in parallel
 - Trigger mass range extended in 2018. Before that only sensitive to $m \sim m(B_s)$
 - Novel software trigger based on MLP neural network • [SciPost Phys. 7, 062 (2019]
 - Experimental analysis ongoing:
 - Currently relying only on unconverted photons
 - Potential to include photon conversions: improve sensitivity.

LHCb [JHEP 01 (2019) 113]

ATLAS:

- Isolated photon pair production at $\sqrt{s} = 7 \text{ TeV}$ [JHEP 01, 086 (2013)]
- Cross section of isolated photon pair production at $\sqrt{s} = 8$ TeV [Phys. Rev. D95, 112005 (2017)]
- II. CMS:
 - Differential cross section of isolated photon pair production at $\sqrt{s} = 7 \text{ TeV} [\text{Eur. Phys. J. C74, 3129 (2014)}]$
- III. BaBar:
 - Search for hadronic decays of Light Higgs Boson [Phys. Rev. Lett. 107, 221803 (2011)] Using result BR($\Upsilon_{2S,3S} \rightarrow \gamma a(jj)$) < 10⁻⁴, 10⁻⁶
- IV. Bellell:
 - Extrapolating results from the above reference assuming $\times 10$ better sensitivity: statistically dominated and 100 times more Υ_{3S}

LHC sensitivities: assuming gluon fusion production

NA64: $e^{-}Z \rightarrow a \rightarrow \gamma\gamma$

Setup:

•

- $100 \text{ GeV } e^-$ beam
- Invisible mode setup:
 - Beam dumped into active PRS+ECAL target
- ALPs would be generated via Primakoff effect: •

•
$$e^{-}Z \rightarrow e^{-}Z\gamma$$
; $\gamma Z \rightarrow aZ$; $a \rightarrow \gamma\gamma$

- Two signatures:
 - $\gamma\gamma$ signal reconstructed in the two last HCAL modules •
 - first module used to veto background activity
 - ALP decays downstream: missing energy event •

Adrián Casais Vidal (IGFAE) - PANIC (2021)

[Phys. Rev. Lett. 125, 081801]

NA64: $e^-Z \rightarrow X \rightarrow \text{invisible}$ [Phys. Rev. Lett. 126, 211802]

- Generic X boson search:
 - in particular a pseudo-scalar
- Boson produced via Primakoff effect:
 - $e^{-}Z \rightarrow e^{-}ZX$; $X \rightarrow$ invisible

Missing energy spectrum of the pseudo-scalar

Adrián Casais Vidal (IGFAE) - PANIC (2021)

• $m_X - \epsilon_X$ exclusion regions Compared to LKB and Berkley results

NA64: $e^{-}Z \rightarrow a \rightarrow e^{+}e^{-}$ [2104.13342]

- e^- electron beam with energies:
 - 100 GeV for 2017 data
 - 150 GeV for 2018 data •
- Visible mode setup:
 - Addition of active target WCAL
- For smaller couplings also invisible setup used
 - Life time long enough to decay in HCAL2 volume
- Signature:
 - e^+e^- pair
 - Detected as double EM shower •
 - WCAL active target shower •
 - ECAL shower •
- Exclusion region:
 - $m_a \in [1, 17.1]$ MeV •
 - ATOMKI anomaly located at 16.7 MeV
 - More statistics needed to cover this effect

- Search for the $K^+ \rightarrow \pi^+ X$ decay
 - X interpreted as an ALP
 - X decays invisible to the detector Backgrounds:
 - $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (using search based on this channel)
 - $\cdot K^+ \rightarrow \pi^+ \pi^0$
 - $K^+ \to \mu^+ \nu_\mu$
 - $\cdot K^+ \rightarrow \pi^+ \pi^+ \pi^-$
 - Selection:

•

•

- $m_a \in [0, 110] \cup [160, 250]$ MeV explored
- $m_{\rm miss}^2 = (P_K P_\pi)^2$ used as discriminating variable

NA62: $K^+ \rightarrow \pi^+ a$, $a \rightarrow \text{invisible}$ [JHEP 03 (2021)

- Frequentist hypothesis test with $m_{\rm miss}^2$ as observable
 - Unbinned profile likelihood ratio test statistic
 - Two compatible events found at $m_X = 196$, 252 MeV
- Upper limits on $BR(K^+ \rightarrow \pi^+ X)$ using CL_s method at 90 % CL
 - Two category limits on the coupling to ALPs derived from those
 - ALPs decaying to visible particles
 - ALPs decaying invisibly

Adrián Casais Vidal (IGFAE) - PANIC (2021)

BaBar [Brian Shuve talk at ICHEP]

- Search for ALPs in $B^{\pm} \to K^{\pm}a, a \to \gamma\gamma$ channel
 - Bump hunt for a narrow peak
- Final results waiting:
 - Blind analysis using only 8% of total data
- Prompt search for
 - $m_a \in [0.1, 4.78]$ GeV
- Displaced search for:
 - $\cdot m_a < 2.5 \text{ GeV}$
 - $c\tau_a = 1, 10, 100 \text{ mm}$
- Main backgrounds: •

$$\cdot e^+e^- \rightarrow q\bar{q} \ (q=u, d, s, c)$$

- $\cdot e^+e^- \rightarrow B\bar{B}$
- Peaking resonances: π^0 , η , η'

BaBar [Brian Shuve talk at ICHEP]

- Unbinned maximum likelihood fit to $m_{\gamma\gamma}$
- $90 \ \% CL$ limits placed for prompt and long lived ALPs on $BF(B^{\pm} \to K^{\pm}a, a \to \gamma\gamma)$
- $BF(\tau)$ used to set limits on coupling to vector boson W
 - Improving current bounds by many orders of magnitude !
- Signature to also be covered by Belle II in the near future as reported in EPS conference !

Belle II: $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$ [Phys. Rev. Lett. 125, 161806]

- Dataset: 445 pb^{-1} from 2018 pilot run
- Search for ALPs produced together with a γ
- Signature:
 - 3 isolated photons
- Selection:
 - $\cdot \quad 0.88\sqrt{s} \le M_{\gamma\gamma\gamma} \le 1.03\sqrt{s}$
- Backgrounds:
 - $\cdot e^+e^- \rightarrow \gamma\gamma\gamma$

$$\cdot e^+e^- \rightarrow e^+e^-\gamma$$

- Binned extended maximum likelihood fits:
 - $m_a \in [0.2, 6.85]$ GeV to the $M_{\gamma\gamma}^2$ distribution
 - $m_a \in [6.85, 9.7]$ GeV to the M_{recoil}^2 distribution

Belle II: $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$ [Phys. Rev. Lett. 125, 161806]

- Binned extended maximum likelihood fits over the mass range
 - $m_a \in [0.2, 6.85]$ GeV to the $M_{\gamma\gamma}^2$ distribution
 - $m_a \in [6.85, 9.7]$ GeV to the M_{recoil}^2 distribution
- 95 % CL upper limits on the signal cross section translated into g_{avv}

- ALPs are pseudo Nambu-Goldstone bosons associated to Spontaneous Symmetry Breaking
- ALPs couple to different sectors of the SM
- Different signatures probing various couplings covered in this talk:
 - Gluons, photons, Vector gauge bosons, Higgs...
- Bright future ahead with new prospects coming from different experiments

BACKUP

Prospects for long-lived particle searches at Belle II (Torben Ferber)

- electroweak gauge bosons

$$\Gamma(a \to \gamma \gamma) = \frac{g_{aW}^2 \sin^4 \theta_W M_a^3}{64\pi}$$

general model-dependent

