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Abstract
The thermodynamic properties of a non-interacting ideal Hadron Resonance Gas

(HRG) of finite volume have been studied in the presence of an external magnetic field.
The inclusion of background magnetic field in the calculation of thermodynamic poten-
tial is done by the modification of the dispersion relations of charged hadrons in terms
of Landau quantization. The generalized Matsubara prescription has been employed
to take into account the finite size effects in which a periodic (anti-periodic) boundary
conditions is considered for the mesons (baryons). We find significant effects of the
magnetic field as well as system size on the temperature dependence of energy density,
longitudinal and transverse pressure especially in low temperature regions.

Introduction
Since few decades, considerable amount of research interest has been grown on the study of
hot and/or dense ‘strongly’ interacting matter produced in the heavy ion collision (HIC) ex-
periments at RHIC and LHC. On top of that, recently, another contemporary research topic is
the investigation of the effect of a strong background magnetic field on various properties of
QCD matter at extreme condition of high temperature and/or baryon density. Interestingly, a
non-central or asymmetric HIC at RHIC and LHC energies has the potential to create strong
magnetic field of the order of∼ 1018 Gauss or more. As the magnitude of the magnetic field is
comparable to QCD energy scale, various novel phenomena owing to the rich vacuum struc-
ture of QCD could take place [1] such as chiral magnetic effect, magnetic catalysis, inverse
magnetic catalysis etc.
Through the HIC experiments, it is possible to probe the bulk thermodynamic properties or
the phase structure of QCD. The non-perturbative aspects of QCD restrict a first principle
analytic calculation of the QCD thermodynamics especially in the low temperature region.
The numerical lattice QCD (LQCD) based calculations [2] is one of the best alternatives
to study the QCD thermodynamics, but is limited to the low baryon density region of the
QCD phase diagram due to its ‘sign’ problem. On the other hand, the hadron resonance gas
(HRG) model [3] is a statistical thermal model for studying the QCD thermodynamics at
finite temperature, baryon density as well as external magnetic field [4, 5]. Interestingly, at
low temperature and small baryon density, the results from HRG model agrees well with the
LQCD.
In the calculation of thermodynamic quantities, one generally assumes the system size to
be infinite. However, in the HIC experiments, the created fireball has finite volume (∼ few
fm3). So, it is justified to consider the boundary effects in the calculation of thermodynamical
quantities pertaining to the HIC [6]. In this presentation, we will be showing the calculation
of various thermodynamic quantities like energy density, longitudinal and transverse pressure
and magnetization of an ideal HRG of finite size in presence of external magnetic field. The
formalism of generalized Matsubara prescription [7] will be used to incorporate the finite size
effect whereas the effect of external magnetic field will enter through the Landau quantization
of the dispersion relations of charged hadrons.

HRG at B = 0 and L =∞
Let us start with the standard expression of the thermodynamic potential (density) Ω of an
ideal HRG at zero-magnetic field in infinite volume as [6]

Ω = −T
∑

i∈{hadrons}

giai

∫
d3k

(2π)3
ln
(

1 + aie
−βωik

)
(1)

where gi = (2si + 1) is the spin degeneracy of hadron i having spin si,

ai = −(−1)2si =

{
+1 if i ∈ {baryons} (half-integer spin)
−1 if i ∈ {mesons} (integer spin),

(2)

β = 1/T is the inverse temperature and ωik =

√
~k2 + m2

i is the single particle energy of
hadron i having mass mi.
From Eq. (1), all the other thermodynamic quantities can be calculated. For example, the
iostropic pressure is P = −Ω, energy density (ε) is

ε = −T 2 ∂

∂T

(
Ω

T

)
=

∑
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gi
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d3k

(2π)3
ωik

eβω
i
k + ai

, (3)

and the entropy density is s = (ε + P )/T etc.

HRG at B 6= 0 and L =∞
Let us now consider an external magnetic field ~B = Bẑ in the positive-ẑ direction. The single
particle energies of charged hadrons will now be Landau quantized as

ωikls =
√
k2z + {2l + 1− 2s sign (ei)}|ei|B + m2

i (4)
with s = −si,−si + 1, · · · , si and l = 0, 1, 2, · · ·

where, ei is the electronic charge of hadron i. It is to be noted that, in Eq. (4), l is related to the
orbital angular momentum quantum number and not the Landau level index in the usual sense
though they are inter-connected. To obtain the expressions of the thermodynamic quantities
at B 6= 0, we make the following standard replacement of the phase-space integral as∫

d3k

(2π)3
f (ωik)→

∞∑
l=0

si∑
s=−si

|ei|B
2π

∫ ∞
−∞

dkz
2π

f (ωikls). (5)

With the above replacement, the thermodynamic potential of ideal HRG of Eq. (1) in presence
of external magnetic field modifies to

ΩB = Ω neutral
hadrons

− T
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{charged
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} ai
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2π
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ln
(

1 + aie
−βωikls

)
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where, the first term on the right hand side (RHS) corresponds to the contribution from the
neutral hadrons which are not affected by the external magnetic field in the leading order.
In the presence of external magnetic field, the pressure becomes anisotropic and have dif-
ferent values along the longitudinal and transverse direction with respect to the direction of
the magnetic field [8]. The longitudinal pressure is obtained from P‖ = −ΩB whereas the

transverse pressure is P⊥ = P‖−MB where M =
(
∂P‖
∂B

)
is the magnetization of the system.

Thus, the explicit expression of transverse pressure comes out to be

P⊥ = Pneutral
hadrons

+
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eω
i
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(7)

where the first term on the RHS corresponds to the contribution of isotropic pressure from the
neutral hadrons. All the other thermodynamic quantities of interest can be calculated from
Eq. (6). The energy density in this case is given by

ε = εneutral
hadrons

+
∑

i∈
{charged

hadrons

}
∞∑
l=0
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s=−si

|ei|B
2π

∫ ∞
−∞

dkz
2π

ωikls

eω
i
kls + ai

(8)

where the first term on the RHS again corresponds to the contribution to energy density from
the neutral hadrons.

HRG with Finite Size
Till now, we have considered the system size to be infinite. To take into account the finite-
volume effect in HRG thermodynamics, we employ the formalism of generalized Matsubara
prescription as discussed in Ref. [7]. For this, we consider our system to be a cube of length
L so that, the spatial coordinates lie in the interval xi ∈ [0, L]. As a consequence of the
generalized Matsubara prescription [9, 10], the momentum integral at B = 0 will have to be
replaced with sum over discrete Matsubara modes as∫

d3k

(2π)3
f (~k)→ 1

L3

∞∑
nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

f (~knxnynz) (9)

where,

~knxnynz =
2π

L
[(nx + b)x̂ + (ny + b)ŷ + (nz + b)ẑ] (10)

in which the parameter b can be chosen appropriately to consider periodic or anti-periodic
boundary condition in the compactified spatial coordinates. It is well known from the Kubo-
Martin-Schwinger (KMS) relation [9] in the context of finite temperature field theory, that the
imaginary time coordinate (τ = it) becomes periodic (anti-periodic) for Bosonic (Fermionic)
system.

However, no restrictions are applied for the compactified spatial coordinates. Though, the
Lattice QCD calculations [11] generally employ the periodic boundary condition on the sp-
tial coordinates of Fermions, yet other work on QCD effective models [12, 13] takes the
identical boundary conditions in the temporal as well as spatial coordinates. Hence, fol-
lowing Ref. [7], in this work we consider periodic boundary condition for the mesons and
anti-periodic boundary condition for the baryons. Hence, in our calculation, we choose the
parameter b in Eq. (10) as

b =

{
0 for Mesons,
1/2 for Baryons.

(11)

For, non-zero external magnetic field, due to dimensional reduction, the transverse momen-
tum is already Landau quantized. Thus, the following Matsubara prescription has been used
for a magnetized HRG with finite system∫ ∞

−∞

dkz
2π

f (kz)→
1

L

∞∑
nz=−∞

f (kz;nz) (12)

where,

kz;nz =
2π

L
(nz + b). (13)

Numerical Results
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The variation of P/T 4 and ε/T 4 as a function of temperature (T ) for different values of sys-
tem size (L) atB = 0. For comparison, the results of Lattice QCD calculations from Ref. [14]
and Ref. [15] are also shown as Lattice I and Lattice II respectively.
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The variation of P‖/T 4, P⊥ and ε/T 4 as a function of temperature (T ) for different values of
system size (L) and magnetic field B.
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The variation of the ratio P⊥/P‖ as a function of temperature (T ) for different values of
system size (L) and magnetic field B.

Summary & Discussions
In summary, we have calculated the energy density, pressure and magnetization of a non-
interacting ideal HRG having finite volume in the presence of a magnetic background. The
background magnetic field modifies the energy dispersion relation of the charged hadrons
owing to Landau quantization. Whereas, the restrictions in spatial dimension quantizes the
three momenta of all the hadrons in terms of generalized Matsubara frequencies. We have
used a periodic (anti-periodic) boundary conditions for the mesonic (baryonic) Matsubara
modes. The current study is important in the context of HIC experiments, where the created
fireball has finite volume (∼ few fm3) and is exposed to a very strong external magnetic field.
We find, the magnetic field makes the pressure of the system anisotropic, and the pressure
has different values in the longitudinal and transverse direction. Moreover, significant effects
of the magnetic field as well as system size on the temperature dependence of energy density,
longitudinal and transverse pressure are observed. These effects are more in low temperature
regions.
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