

J/ψ-meson: vector charmonium (cc) state with lowest mass [3.096 GeV/c²]

• Origin of J/ψ : \rightarrow **Prompt** J/ψ : direct production / decay of heavier charmonium states e.g. $\psi(2s) \rightarrow$ **Non-prompt** J/ψ : weak-decays of b-hadrons (b $\rightarrow J/\psi$)

Opportunity to access beauty quark production

o Non-prompt J/ ψ production:

- ⇒ pp collisions, provides a test for pQCD models & reference for larger collision systems
- \odot Production of non-prompt J/ ψ modified in Pb–Pb and p–Pb with respect to the pp collisions
- \Rightarrow <u>Pb-Pb collisions</u> \rightarrow due to the presence of a hot quark gluon plasma (QGP)

Study of sensitivity of bulk properties on quark diffusion constants.

⇒ <u>p-Pb collisions</u> → due to cold nuclear matter (CNM) effects (without QGP formation) *i.e. nuclear shadowing & partonic energy loss*, important for understanding the QGP production in Pb-Pb collisions → provides an evaluation of CNM effects on beauty production

o Nuclear Modification factor (R_{DA}/R_{AA}) :

Energy-loss / nuclear modification effects in p-Pb

& Pb-Pb collisions can be quantified by measuring R_{pA} or $R_{AA} = R_{pA}(p_T) = \frac{1}{\langle N_{pA} \rangle} \cdot \frac{dN_{pA}/dp_T}{dN_{pA}/dp_T}$

Time Projection Chamber

 $R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \cdot \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$

Inner Tracking System

o R_{pA/AA} = 1; p-Pb or Pb-Pb behaves as scaled pp collisions

o $R_{pA/AA} \neq 1$; Modifications observed in the non-prompt J/ψ production due to **cold** or **hot nuclear matter effects** in the nuclear collisions.

(TPC)

THE ALICE DETECTOR

2) b $\rightarrow J/\psi$ in ALICE ¹

- $J_I\psi$ —e⁺e⁻ (BR ~ 5.9%) reconstruction for transverse momentum (p_{γ}) down to 0 - Electron identification by TPC down to low momentum (using dE/dx loss) within central barrel region $|\eta| < 0.9$ - Reconstruction of b $- J_I\psi$ vertices using inner lavers of ITS. close to interaction point

- $J/\psi \rightarrow \mu^* \mu^*$ in forward region $\frac{4 < \eta < -2.5}{2}$ measured, but not possible to measure non-prompt component !

 Possible with upgraded ALICE (LHC Run 3)

 - non-prompt J/ψ x-distribution distinguishable from prompt J/ψ, allow the separation on a statistical basis down to ~1 GeV/c

- Fraction ($f_{\rm B}$) of non-prompt J/ $\psi \rightarrow$ Likelihood fits on inv. mass and pseudoproper decay-length (x)²

3) pp: p_{T} differential cross section at $\sqrt{s_{MM}} = 5.02$ TeV

- ρ_{γ} -differential production cross sections for non-prompt J/ ψ measured as a function of ρ_{γ} in central rapidity region down to $\rho_{\gamma} = 2$ GeV/c 3 - Measurements compatible with perturbative QCD (Fixed-order next to leading log: FONLL model) predictions within the uncertainties - Consistent with CMS/ATLAS results in $\rho_{\gamma} > 6$ GeV/c region within uncertainty bands

4) p-Pb: prompt & non-prompt J/ ψR_{nPh} at $\sqrt{s_{NN}}$ = 5.02 TeV

- R_{pPb} measured as function of p_{τ} for $|\eta| < 0.9$ for non-prompt as well as prompt J/ψ - J/ψ production is suppressed in p–Pb collisions relative to the scaled pp collisions at low- p_{τ}
- Degree of Suppression compatible within uncertainties with theoretical models included CNM
- effects i.e. nuclear modifications of the PDFs, (anti)Shadowing of parton distributions etc;
- In addition, compatible with ATLAS measurements for $p_{\rm T} \ge 9~{\rm GeV}/c$

- hint of R_{pPb} [$b \rightarrow J/\psi$] > R_{pPb} [prompt J/ψ] for $p_T < 3$ GeV/c

5) Pb-Pb: non-prompt J/ ψ R_{AA} at $\sqrt{s_{NN}}$ = 2.76 TeV

- R_{AA} shown for low p_T [1.5 < p_T < 4.5 GeV/c] and high p_T [4.5 < p_T < 10 GeV/c], central collisions at $\sqrt{s_{NN}}$ = 2.76 TeV $\frac{5}{2}$
 - $R_{\rm AA}$ < 1 \Rightarrow Suppression is observed in the J/ ψ production yield
- Measurements are compatible with CMS results for [6.5 < $p_{\rm T}$ < 30 GeV/c]
- No significant dependence on the collisions centrality i.e. medium size
 - Results are compared with various theoretical models included different effects regarding various transport approaches of heavy quarks in the QGP.
 - o Most of the models predict larger values of R_{AA} than measured values
 - o more precise measurements are needed to discriminate among different models

- Measured non-prompt J/ψ cross section agrees with pQCD predictions in pp collisions.
- Non-prompt J/ψ production is modified in p-Pb & Pb-Pb collisions as compared to
- scaled pp collisions due to cold or hot nuclear matter effects, respectively.
- To discriminate between various models, more precise measurements needed
- \rightarrow non-prompt J/ ψ R_{AA} measurements at $\sqrt{s_{NN}}$ = 5.02 TeV will be important (ongoing)

Opportunities with ALICE for Run 3 (2022-23)

