

UNIVERSITY OF BUCHAREST

Oana Ristea¹, Catalin Ristea^{1,2}, Alexandru Jipa¹, Ionel Lazanu¹, Marius Calin¹, Tiberiu Esanu^{1,3} ¹University of Bucharest, Faculty of Physics, ²Institute of Space Science, ³National Institute of Nuclear Physics and Engineering Horia Hulubei, Bucharest-Magurele, Romania

Introduction

High-energy heavy ion collisions provide a unique opportunity to study the nuclear matter under extreme conditions. The hot and dense matter produced in these collisions may evolve through the following scenario: pre-equilibrium, possible formation of QGP, a QGP-hadron gas phase transition, a gas of interacting hadrons, a chemical freeze-out (FO) state when the inelastic processes cease and the particle ratios become fixed and, finally, a thermal freeze-out state when the elastic interactions among the produced hadrons cease and the particles stream freely to detectors.

Thermal (kinetic) freeze-out properties of the produced system (i.e. temperature and transverse flow velocity) can be obtained from the analysis of the transverse momentum distributions of the identified charged hadrons.

Blast-wave model

- The model assumes a cylindrical expanding fireball in local thermal equilibrium, in which the particles are locally thermalized at a kinetic freeze-out temperature and are moving with a common transverse collective flow velocity (E. Schnedermann et. al., PRC48 (1993) 2462).
- \rightarrow The p_T spectrum of produced particles is described by:

where T_{kin} is the freeze-out temperature, m_T is the transverse mass, $\rho_T = \tanh^{-1}(\beta)$ and I_0 and K_1 are the modified Bessel functions.

 \rightarrow The radial flow velocity profile can be parametrized as:

$$\beta = \beta_S (r/R)^n$$

where R is transverse geometric radius of the particle source at freeze-out, β_{S} is the surface velocity and n is the exponent of flow velocity profile. There are three fit parameters: β_{s} , T_{kin} and n.

 \rightarrow The average transverse radial flow velocity is:

$$\langle \beta \rangle = \frac{2}{2+n} \beta_S$$

 \rightarrow Usually, the p_T spectra of charged pions, kaons and (anti)protons are fitted simultaneously with a single set of parameters \rightarrow the kinetic freeze-out parameters (T_{kin} , < β_T >, n) of the system.

Strange particle production in relativistic nuclear collisions

Blast-wave analysis of strange hadron spectra

The data from SPS and RHIC have shown that the spectra of (multi-)strange particles reflect a higher kinetic freeze-out temperature suggesting an early FO for these particles. This was interpreted as due to diminished hadronic interactions with the expanding bulk matter after chemical FO (NA57 Collaboration, F Antinori et al, J.Phys.G30(2004)823-840; STAR Collaboration, J. Adams et al., Nucl. Phys. A 757, 102 (2005)).

The p_T spectra of K_{0S} , Λ and anti- Λ , produced in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27 and 39 GeV from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC) were fitted using the BW model (STAR Collaboration, J. Adam et al., Phys.Rev.C 102 (2020) 3, 034909).

Comparison - BW fit results on π^{\pm} , K[±], p and anti-p p_T spectra:

Au+Au, $\sqrt{s_{NN}} = 7.7$ GeV, 0-5% centrality: Au+Au, $\sqrt{s_{NN}} = 11.5$ GeV, 0-5% centrality: $T_{kin} = 116 \pm 11$, $<\beta_T > = 0.462 \pm 0.043$ $T_{kin} = 118 \pm 12$, $<\beta_T> = 0.464 \pm 0.044$ $\beta_{\rm S} = 0.578 \pm 0.054, \, n = 0.5$ $\beta_{S} = 0.580 \pm 0.055, n = 0.5$ (STAR Collab. (L. Adamczyk et al.), Phys. Rev. C. 96 (2017) 44904)

Centrality dependence of the BW fit parameters:

 \rightarrow for each centrality class, the average transverse radial flow velocity of strange hadrons increases with the energy

 \rightarrow for a given centrality class, T_{kin} increases very slowly with energy

Au+Au, $\sqrt{s_{NN}} = 39$ GeV, 0-5% centrality: $T_{kin} = 117 \pm 11$, $<\beta_T > = 0.492 \pm 0.038$, $\beta_{\rm S} = 0.664 \pm 0.051, \, n = 0.7$

> $\rightarrow T_{kin}$ and average transverse radial flow velocity $<\beta_{T}>$ of these strange hadrons show no sensitivity to the collision centrality

 K_{0S} , Λ , anti- $\Lambda \rightarrow \pi^{\pm}$, K^{\pm} , p and anti-p \rightarrow K_{0S}, Λ , anti- Λ decouple earlier in the system evolution than the other particle types (π^{\pm} , K[±], p and anti-p), having a smaller common transverse flow velocity

Conclusions

Acknowledgements

with IFA.

Energy dependence

 \rightarrow sequential kinetic freeze-out:

 \rightarrow for all studied energies, $<\beta_{T}>$ obtained from a global BW fit on K_{0S} , Λ , anti- Λp_T spectra is smaller than $<\beta_{T}>$ obtained by fitting the π^{\pm} , K[±], p and anti-p p_T spectra (STAR Collab. (L. Adamczyk et al.), Phys. Rev. C. 96 (2017) 44904)

 \rightarrow T_{kin} obtained from K_{0S}, Λ , anti- Λp_T spectra BW fit is larger than the corresponding value obtained from the π^{\pm} , K[±], p and anti-p p_T spectra fitting, for all energies (STAR Collab. (L. Adamczyk et al.), Phys. Rev. C. 96 (2017) 44904)

This analysis suggests an early decoupling for strange particles $(K_{0S}, \Lambda, anti-\Lambda) \rightarrow$ the system cools and has an expansion of increasing magnitude with energy and a sequential decoupling of particles dictated by their hadronic cross-sections.

Very weak centrality dependence for Tkin and $<\beta_{T}>$, indicating similar freeze-out conditions in these collisions.

Transverse flow velocities increase with energy, but the values are smaller than the values from π , K, p BW fits

Lower thermal freeze-out temperatures are measured at lower beam energies

This work was supported by ANCS through 5/5.2/FAIR-RO Program - FAIR08/2020 contract