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Overview

We present a solution to the long-standing problem of constructing the causal
equation of state of hadron resonance gas model (HRGM) with Lorentz con-
tracted eigenvolumes of particles with the hard-core repulsion. It is based on
the concept of Induced Surface and Curvature Tension (ISCT) [1] to treat the
excluded volumes of hard spheres in the high-pressure region. Its mathematically
sound and extensive derivation was obtained according to principles of morpho-
logical thermodynamics [2]. Following the Hadwiger theorem, the concept of
morphological thermodynamics [3] assumes that the change of free energy of
a convex rigid body B immersed into the fluid whose state is away both from
the critical point and from wetting and drying transitions can be completely
described by four thermodynamic characteristics only: the system pressure p,
the mean surface tension coefficient Σ, the mean curvature tension coefficient K
and the bending rigidity coefficient ψ, i.e. −∆Ω = pVB + ΣSB + KCB + ψXB.
Here the quantities VB, SB, CB and XB are, respectively, the volume of the
rigid body B, its surface, mean curvature integrated over the surface of B and
the mean Gaussian curvature integrated over the surface of B
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Figure 1: The excluded volume vUrel12 (Θv) sin(Θv) of two Lorentz contracted hard spheres in units of the excluded
volume of two nonrelativistic hard spheres vNrel12 for the radii R2 = R1 fm (dashed curve) and for the radii
R2 = 2R1 fm (dotted curve) as a function of the angle Θv between the 3-momentum vectors of the particles. Left
panel shows the nonrelativistic limit γ1 = γ2 = 1 (for two spheres). The solid curve is the exact result for
vNrel12 sin(Θv), while the dashed and dotted curves are obtained approximate formula [4]. Right panel shows the
ultra-relativistic limit γ1 = γ2 = 1000 (for two thin disks).
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Figure 2: Averaged excluded volume of gas of Lorentz contracted rigid spheres in units of the excluded volume of two
non-relativistic hard spheres of radius R1 = 0.39 fm as a function of the temperature of the system T . Various markers
correspond to different sets of ISCT EoS parameters. Left panel: a gas of baryons (nucleons and anti-nucleons) with
masses m1 = 940 MeV and degeneracy factor g1 = 4. Right panel: a gas of pions with masses m1 = 140 MeV and
degeneracy factor g1 = 3.
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using local principal curvature radii Rc1 and Rc1. This concept was extended to the
grand canonical ensemble of systems with not conserved number of particles.
Practically an exact formula for the relativistic second virial coefficient (excluded
volume) (see Fig 1) was obtained and investigated for various equations of state and
a wide range of temperatures T and was shown that it reproduces a close packing of
equal spheres limit η = 1− π

3
√

2 ≈ 0.26 in case of high temperatures with sufficient
accuracy without any prior knowledge about such system configuration (see Fig 2).
We as well propose an ansatz to take into account the effect of Lorentz contraction
for higher-order virial coefficients of Boltzmann particles with hard-core repulsion.
Such an ansatz allows us to obtain the expected vanishing limit for the effective
relativistic excluded volume for high temperatures T � m.

Conclusions

The present work is a first and important step to the development of the novel
hadron resonance gas model with multicomponent hard-core repulsion which is
causal inside the whole hadronic phase of the QCD matter. In contrast to all
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Figure 3: Comparison of the pressure of ISCT EoS for Lorentz contracted hard spheres which is able to mimic the
hadrons resonance gas model (solid and dashed curves) with the lattice QCD thermodynamics data (long dashed curve
for [5] and the dashed-dotted curve for [6] as the function of temperature at vanishing baryonic chemical potential.

known formulations of the hadronic matter EoS which in some way are taking into
account the Lorentz contraction of particle’s eigenvolumes, the present formulation
correctly reproduces the relativistic excluded volume of two hard-core particles with
arbitrary velocities and masses. This automatically provides the correct value of
their second virial coefficient, which in the relativistic case differs from the
relativistic excluded volume and comparison with lattice QCD thermodynamics is
shown in Fig 3.
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