

Azimuthal correlations in Pb-Pb and Xe-Xe collisions with ALICE

Catalin Ristea Institute of Space Science, RO

On behalf of the ALICE Collaboration

8th September 2021

Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

Most central collision: fluctuations of participating nucleons

Anisotropic flow

Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

Most central collision: fluctuations of participating nucleons

Sensitive to the system evolution

- Constrain initial conditions, equation-of-state (EOS), transport properties
- Stronger constraints are obtained from measurements of identified particles Panic'21 | Sep, 8th

Anisotropic flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{n})])$$

Particle azimuthal distribution measured with respect to the symmetry plane is not isotropic \rightarrow Fourier series

 $v_{\rm n}$ quantify the event anisotropy

- v_2 elliptic flow \rightarrow reflects the almond-shaped **geometry** of the interaction volume
- v_3 triangular flow \rightarrow originates from event-by-event **fluctuations** of nucleon positions

Panic'21 | Sep, 8th

Scalar product method

STAR Coll, Phys. Rev. C66 (2002) 034904 N. Borghini, Phys. Lett. B642 (2006) 227–231 ALICE, arXiv:2107.10592

$$v_{\mathrm{n}}\{\mathrm{SP}\} = rac{\langle \langle \mathbf{u}_{\mathrm{n},k} \mathbf{Q}_{\mathrm{n}}^*
angle
angle}{\sqrt{rac{\langle \mathbf{Q}_{\mathrm{n}} \mathbf{Q}_{\mathrm{n}}^{\mathrm{A}*}
angle \langle \mathbf{Q}_{\mathrm{n}} \mathbf{Q}_{\mathrm{n}}^{\mathrm{B}*}
angle}}{\langle \mathbf{Q}_{\mathrm{n}}^{\mathrm{A}} \mathbf{Q}_{\mathrm{n}}^{\mathrm{B}*}
angle}}$$

 $egin{aligned} \mathbf{u}_{\mathrm{n,k}} &= e^{i\mathrm{n}arphi_{\mathrm{k}}} & ext{unit vector of particle of interest (POI) k} \ \mathbf{Q}_{\mathrm{n}} & ext{the } \mathbf{Q} ext{ vector from reference particles (RPs)} \end{aligned}$

$$Q_{\mathrm{n,x}} = \sum_{\mathrm{j}} w_{\mathrm{j}} \cos(\mathrm{n} arphi_{\mathrm{j}}), \; Q_{\mathrm{n,y}} = \sum_{\mathrm{j}} w_{\mathrm{j}} \sin(\mathrm{n} arphi_{\mathrm{j}})$$

 u_n , Q_n from the same or different detectors

• a pseudorapidity gap $|\Delta \eta|$ between POI and RPs

 v_n of K_S^0 , Λ , Ξ is determined using the v_n vs invariant mass method N^{Sgn} and N^{Bg} are extracted from fits of the invariant mass distribution $v_n^{\text{Tot}}(m_{\text{inv}})$ is measured using the scalar product method

$$\boldsymbol{v}_{n}^{\text{Tot}}(\boldsymbol{m}_{\text{inv}}) = \boldsymbol{v}_{n}^{\text{Sgn}} \frac{N^{\text{Sgn}}}{N^{\text{Tot}}}(\boldsymbol{m}_{\text{inv}}) + \boldsymbol{v}_{n}^{\text{Bg}}(\boldsymbol{m}_{\text{inv}}) \frac{N^{\text{Bg}}}{N^{\text{Tot}}}(\boldsymbol{m}_{\text{inv}})$$

Panic'21 | Sep, 8th

Cumulants method

Ollitrault & Borghini

Two- and four-particle azimuthal correlations, average over one event

$$egin{aligned} &\langle 2
angle \equiv \langle \cos(n(arphi_i - arphi_j))
angle, i
eq j \ &\langle 4
angle \equiv \langle \cos(n(arphi_i + arphi_j - arphi_k - arphi_l))
angle, i
eq j
eq k
eq l \end{aligned}$$

Cumulants of 2th, 4th and 6th order, average over all events

$$egin{aligned} &c_n\{2\}\equiv \langle\langle 2
angle
angle=v_n^2\ &c_n\{4\}\equiv \langle\langle 4
angle
angle-2\langle\langle 2
angle
angle^2=-v_n^4\ &c_n\{6\}\equiv \langle\langle 6
angle
angle-9\langle\langle 4
angle
angle\langle\langle 2
angle
angle+12\langle\langle 2
angle
angle^3=4v_n^6\ &\ldots \end{aligned}$$

Symmetric Cumulants SC(m, n)

$$SC(m,n) = \langle v_m^2 v_n^2
angle - \langle v_m^2
angle \langle v_n^2
angle \ NSC(m,n) = SC(m,n) / \langle v_m^2
angle \langle v_n^2
angle$$

SC/NSC > 0 \rightarrow correlation, SC/NSC < 0 \rightarrow anti-correlation

A. Bilandzic et al, Phys. Rev. C 89, 064904 (2014) Phys. Rev. C 103, 024913 (2021)

Panic'21 | Sep, 8th

ÍSS

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, particle identification based on specific energy loss
- Time-of-Flight (TOF)
 - Particle identification based on the flight time

• V0 detector (forward region)

- Triggering, centrality determination, Q-vector, event-shape selection
- Track selection
 - $|\eta| < 0.8$ (unidentified)
 - $\circ \hspace{0.5cm} |y| < 0.5 \; (\pi, \, K, \, p, \, K^0_{S} \, , \, \Lambda, \, \Xi)$
- Data sample
 - \circ Pb-Pb at $\sqrt{s}_{\rm NN}$ = 5.02 TeV ~320M events
 - Xe-Xe at $\sqrt{s_{NN}}$ = 5.44 TeV ~1.3M events

 v_{2} {n} (n=4,6,8) measured in various collision systems over a broad multiplicity range

- Long-range multiparticle correlations in pp and p–Pb collisions at multiplicities $N_{ch} \ge 30$
- Good agreement of v_2 {4} between data and calculations from IP-Glasma+MUSIC+UrQMD

Panic'21 | Sep, 8th

İSS

ALICE

First measurements of higher order Symmetric Cumulants (SC) \rightarrow independent constraints

$$SC(k,l,m) = \langle v_k^2 v_l^2 v_m^2 \rangle - \langle v_k^2 v_l^2 \rangle \langle v_m^2 \rangle - \langle v_k^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_l^2 v_m^2 \rangle \langle v_k^2 \rangle + 2 \langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle$$

 $\mathrm{NSC}(k,l,m) = \frac{\mathrm{SC}(k,l,m)}{\langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle}$

SC(2,3,4) non-zero in mid-central collisions \rightarrow presence of genuine correlations between the flow amplitudes v_2 , v_3 and v_4

- Both T_RENTo+hydro and EKRT-hydro → hint for correlations developed in the hydrodynamic evolution of the system
- Further constraints to the models

Panic'21 | Sep, 8th

Panic'21 | Sep, 8th

ALI-PREL-491879

10

70

ALICE

Particle identification (PID)

PID @ *p*_τ > 4 GeV/*c*

Ο

- π and p identified using TPC (purity >80%) Ο
- Topological reconstruction for K^0_{S} , Λ and Ξ

v_{2} {4} for identified hadrons

- For $p_T < 2 \text{ GeV}/c$: v_2 of lighter particles is larger than heavier ones \rightarrow mass ordering
 - Interplay between elliptic and radial flow
 - **•** Radial flow (isotropic expansion) pushes particles to higher p_{T}
- For $3 < p_T < 10$ GeV/c: particles tend to group into mesons and baryons

Panic'21 | Sep, 8th

v_{2} {4} for identified hadrons

- For $p_T < 2 \text{ GeV}/c$: v_2 of lighter particles is larger than heavier ones \rightarrow mass ordering
 - Interplay between elliptic and radial flow
 - **•** Radial flow (isotropic expansion) pushes particles to higher p_{T}
- For $3 < p_T < 10$ GeV/*c*: particles tend to group into mesons and baryons
- Hydrodynamics calculations describe v_2 {4} of π , K, p well

Panic'21 | Sep, 8th

Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

> Flow vector q_n distribution $Q_{n,x} = \sum_i \cos(n \varphi_i) - Q_n = \{Q_{n,x}, iQ_{n,y}\}$ $Q_{n,y} = \sum_i \cos(n \varphi_i) - q_n = |Q_n| / \sqrt{M}$

Event Shape Engineering (ESE)

Event Shape Engineering (ESE)

Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

	Flow vector			$q_{\rm n}$ distribution		
	$Q_{n,x} = \sum_{i} \cos(n \varphi_{i})$			$Q_n = \{Q_{n,x}, iQ_{n,y}\}$		
	$Q_{n,y} = $	$\sum_{i} \cos($	$(n \varphi_i)$	$q_n = Q_n /\sqrt{2}$	M	
q	n selectior	r	<i>v</i> _n	1	Q _n	
	V0C		TPC		V0A	
	3.7<ŋ<-1.	7.	-0.8<ŋ<0.8	3	2.8<ŋ<5.1	'n

- q_2 V0C selects events up to 30% larger or smaller v_2 than the average
- $p_{\rm T} > 3 \text{ GeV}/c$: ratios almost flat \rightarrow same source of flow fluctuations
- $p_{T} < 3 \text{ GeV}/c$: weak p_{T} dependence

Panic'21 | Sep, 8th

İSS

- p_{T} > 3 GeV/*c*: ratios almost flat → same source of flow fluctuations
- $p_{T} < 3 \text{ GeV}/c$: weak p_{T} dependence \rightarrow different ellipticity for q_{2} classes
- Same values for inclusive and identified hadrons
 - No dependence on particle species

İSS

$v_2(p_T)$ with q_2 : 5-10%, 30-40% centrality

- $p_{T} < 2 \text{ GeV/}c$: mass ordering \rightarrow interplay between radial and elliptic flow
- $p_{\rm T} \sim 2-3$ GeV/c: crossing between v_2 of mesons and baryons
- $3 < p_T < 10 \text{ GeV}/c: v_2(\text{baryons}) > v_2(\text{mesons})$
- Particles grouping according to their type (mesons and baryons)
- $p_{T} > 10 \text{ GeV/}c$: no particle type dependence within uncertainties
- Same source of flow fluctuations
 - No dependence on particle species

ISS

$v_3(p_T)$ with q_3 : 5-10%, 30-40% centrality

 Mass ordering at low p_T, baryon-meson grouping at intermediate p_T

- Same source of flow fluctuations
 - No dependence on particle species

İSS

$v_3(p_T)$ with q_2 : 5-10%, 30-40% centrality

Mass ordering at low p_{T} , baryon-meson grouping at intermediate p_{T}

v₃ anti-correlated with q₂
 ALICE, Phys. Rev. C 97 (2018) 024906

27

ISS

$v_3(p_T)$ with q_2 : 5-10%, 30-40% centrality

 Mass ordering at low p_T, baryon-meson grouping at intermediate p_T

- v_3 anti-correlated with q_2
- Same source of flow fluctuations
 - No dependence on particle species

Xe-Xe: v_2 for identified hadrons

- $p_{T} < 2 \text{ GeV}/c$: mass ordering due to interplay between radial flow and anisotropic geometry
- $p_{\rm T} \sim 2-3$ GeV/*c*: crossing between $v_{\rm n}$ of mesons and baryons
- $p_T > 3 \text{ GeV/c:}$ particles grouping according to their type ($v_n^{\text{baryons}} > v_n^{\text{mesons}}$)

Panic'21 | Sep, 8th

ALICE

System size dependence, v_2

İSS

Constrain initial geometry and transport coefficients (e.g. η/s)

• 0-5%: $v_2^{Xe} > v_2^{Pb} \rightarrow Xe$ deformation

• 10-20%:
$$v_2^{Xe} \sim v_2^{Pb}$$

• 40-50%:
$$v_2^{Pb} > v_2^{Xe}$$

IP-Glasma+MUSIC+UrQMD

- Reproduces data for $p_{T} < 1$ GeV/c for all centralities
- Overestimates by same amount both Pb-Pb and Xe-Xe data for $p_T > 1$ GeV/c

ALICE, arXiv:2107.10592

System size dependence, v_2

 ε_{3} {2} Xe-Xe > ε_{3} {2} Pb-Pb, but v_{3} Xe-Xe ~ v_{3} Pb-Pb

No significant p_T dependence, except for π and p v_3 for $p_T <$ 2 GeV/*c* in the 0–10% centrality class

Panic'21 | Sep, 8th

İSS

Summary

Plethora of azimuthal correlations measurements by ALICE

First measurements of higher order SC in Pb-Pb collisions

• Presence of genuine correlations between flow amplitudes

First measurement of centrality dependence of $\rho(v_2, [p_T])$, $\rho(v_3, [p_T])$ and $\rho(v_2, v_3, [p_T])$

- Models reproduce the trend within errors
- v_n coefficients measured with ESE technique in Pb-Pb collisions
 - v_n larger or smaller than the average
 - $v_3^{"}$ is anti-correlated with q_2 classes
 - Same source of flow fluctuations up to 10 GeV/c
 - No dependence on particle species
- v_n coefficients of identified hadrons measured in Pb-Pb and Xe-Xe collisions
 - Mass ordering for $p_{T} < 2 \text{ GeV/}c$
 - Crossing between mesons and baryons for $p_{\rm T} \sim 2-3$ GeV/c
 - Particle type dependence for $p_{T} > 3 \text{ GeV/}c$

Summary

Plethora of azimuthal correlations measurements by ALICE

First measurements of higher order SC in Pb-Pb collisions

• Presence of genuine correlations between flow amplitudes

First measurement of centrality dependence of $\rho(v_2, [p_T])$, $\rho(v_3, [p_T])$ and $\rho(v_2, v_3, [p_T])$

- Models reproduce the trend within errors
- v_n coefficients measured with ESE technique in Pb-Pb collisions
 - v_n larger or smaller than the average
 - $v_3^{"}$ is anti-correlated with q_2 classes
 - Same source of flow fluctuations up to 10 GeV/c
 - No dependence on particle species
- v_n coefficients of identified hadrons measured in Pb-Pb and Xe-Xe collisions
 - Mass ordering for $p_{T} < 2 \text{ GeV/}c$
 - Crossing between mesons and baryons for $p_{\rm T} \sim 2-3$ GeV/c
 - Particle type dependence for $p_{T} > 3 \text{ GeV/}c$

Panic'21 | Sep, 8th

BACKUP

 $p(v_3^2, [p_T])$

0.2

-0.1

ALI-PREL-494374

ρ(v3, [pt])

0.2 $0.4 - [p]: |\eta| < 0.4, v_2: |\Delta \eta| > 0.8$

Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Ke-Xe Vs_{NN} = 5.44 TeV

Pb-Pb: Trajectum Pb-Pb: AMPT

INITIAL STATE

• ρ_3 Pb–Pb and Xe–Xe results are compatible

Pb-Pb: IP-Glasma+MUSIC+UrQMD

Pb-Pb: IP-Glasma+MUSIC+UrQMD (w/o CGC)

Xe–Xe: IP-Glasma+MUSIC+UrQMD, $\beta = 0.16$

 \diamond ρ_3 results are positive and have a modest centrality dependence for the presented centralities

HYDRO

Pb-Pb: v-USPhydro

Xe–Xe: v-USPhydro, $\beta = 0$

Xe-Xe: v-USPhydro, $\beta = 0.16$

Centrality (%)

- Comparison to hydro models:
 - Better described by IP-Glasma ٠
 - TRENTo predicts negative ρ_3 in peripheral collisions which is not seen in data

Panic'21 | Sep, 8th

- \bullet ρ_3 comparison to initial state calculations:
 - IP-Glasma with [s] estimator works best
 - Choice of estimator for $[p_T]$ matters
 - \rightarrow S/A has anti-correlation of ϵ_2 and ϵ_3 leading to negative ρ_3
 - · Negative values predicted by TRENTo in non-central collisions not seen in data

50

60 Centrality (%)

• ρ_3 not sensitive to deformation parameter β

$\rho(v_2, v_3, [p_T])$ correlations

 $\rho(v_2^2, v_3^2, [p_T]) = \frac{\langle v_2^2, v_3^2, [p_T] \rangle - \langle v_2^2 \rangle \langle v_3^2, [p_T] \rangle - \langle v_3^2 \rangle \langle v_2^2, [p_T] \rangle - \langle [p_T] \rangle \langle v_2^2, v_3^2 \rangle + 2 \langle [p_T] \rangle \langle v_2^2 \rangle \langle v_3^2 \rangle}{\sqrt{var(v_2^2)}\sqrt{var(v_3^2)}\sqrt{c_k}}$

Genuine correlation of $\textit{v}_{\rm 2}$, $\textit{v}_{\rm 3}$ and $[\textit{p}_{\rm T}]$

First measurement performed in Pb-Pb collisions

- Non-zero for all centralities
- ~ 3σ effect in 0-40% centrality
- Models reproduce the trend within uncertainties
 - Measurement will benefit from increased statistics in Run 3

- $p_{T} > 3 \text{ GeV}/c$: ratios almost flat \rightarrow same source of flow fluctuations
- p_{T} < 3 GeV/*c*: almost no p_{T} dependence in contrast to central collisions
- Same values for inclusive and identified hadrons
- No dependence on particle species

İSS