

Virtual Photon Measurements with the HADES at GSI

DiElectron reconstruction in Ag+Ag collisions at $\sqrt{s_{NN}} = 2.55 \, GeV$ PANIC 2021, 05.09.-10.09.

Jan-Hendrik Otto for the HADES collaboration, JLU Gießen September 5, 2021

Nature Physics volume 15, pages 1040-1045 (2019)

- Explore high- μ_B region of the QCD phase diagram
- Focus on rare and penetrating probes \rightarrow DiElectrons
- Address various aspects of baryon-meson coupling

3 stages of heavy ion collision where DiElectrons are produced:

- Intitial NN collisions
- Fireball
- Decay of hadronic resonances

05/09/2021

The High Acceptance DiElectron Spectrometer

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- · Low mass Mini-Drift-Chambers (MDCs)
- · Time of flight walls RPC and ToF
- upgraded RICH detector and new ECal for electron and photon detection
- Almost full azimuth angle coverage and polar angles between $18^\circ\,-\,85^\circ$
- 15-fold (25 μ m, $\Delta z = 3.7$ mm) segmented target

05/09/2021

261

BICH accented

000

10⁻³ pre-selected

• $4.55 \cdot 10^9$ Ag+Ag collisions analysed (0 - 40% centrality)

39.813 %

TOF accented

5.243

no conversion

- RICH (and TOF) criteria for lepton identification
- New: Highly efficient physical background (conversion) rejection based on the RICH

05/09/2021

Electron identification in AgAg at $\sqrt{S_{NN}}$

- HADES (RICH detector) combines high efficient electron identification with high pion and conversion suppression
- $\rho \rightarrow \pi \pi$ (~ 100%) vs. $\rho \rightarrow ee$ (~ 4.72 · 10⁻³%)
- Integrated electron purity of $P \sim 99.9\%$ (UrQMD simulation, RICH rotation technique)
- + Efficiency calculation based on e^{\pm} embedded in real data
- HADES electromagnetic calorimeter might even further improve

05/09/2021

The HADES RICH - conversion suppression

Upgrade of the HADES RICH (in cooperation with CBM)

- On average 16 photons/ring
- Negligible background level timing cuts enable high level noise rejection
- Excellent conversion recognition even at vanishing opening angles by counting converted Cherenkov photons (Cals)

PANIC 2021

05/09/2021

• Efficiency correction based on single electron simulation embedded into real data (in p, θ, ϕ)

$$\cdot < BG_{+-} >= 2k\sqrt{< FG_{++} >< FG_{--} >}$$

- BG from mixed-event technique for $M_{ee} > 300 \, MeV/c^2$
- · S/B ($M_{ee} = m_{\omega}$) \approx 3
- S/B > 1 for $M_{ee} > 400 \, MeV/c^2$

05/09/2021

Cocktail simulation

- π^0 extrapolated from π^+ and π^- measurement; π^0 analysis in $\pi^0 \rightarrow \gamma \gamma$ and $\pi^0 \rightarrow \gamma \gamma \rightarrow 4e$ currently performed
- η from TAPS systematics (Phys. Rev. C84(1 2011)); analysis via conversion channel also currently performed
- + ω and ϕ from thermal models; good agreement with extrapolation from high momentum data to full phase space in ω
- clear excess above final freezeout hadrons

	Mult/ 〈A _{part} 〉	0 — 40 % centrality
$\langle A_{part} \rangle$		102
$Mult_{\pi^0}$	0.08	8.01
$Mult_{\eta}$	$2 \cdot 10^{-3}$	0.20
$Mult_{\omega}$	$3.50 \cdot 10^{-5}$	$3.57 \cdot 10^{-3}$
$Mult_{\phi}$	$3.00 \cdot 10^{-7}$	$3.06 \cdot 10^{-5}$

HADES

- + No NN reference measured by HADES at $\sqrt{s_{\rm NN}} = 2.55 \; {\rm GeV} \label{eq:snn}$
- pp and pn simulated using GiBUU 2021 release (analogue to Physical Review C, 6, 102.064913) modeling NN = 0.54 pp + 0.46 pn
- Uncertainties especially in the pn-bremsstrahlung contribution dominant for $M_{ee} > 500 \, MeV/c$

PANIC 2021

05/09/2021

- Subtraction of hadronic cocktail and GiBUU NN reference reveals fireball radiation
- Acceptance correction based on PLUTO simulation
- Only statistical errors shown

9/14

05/09/2021

Centrality dependent analysis

- Centrality estimation based on the Glauber MC model (analogue to published AuAu data, Eur. Phys. J. A 54, 1434-601X)
- + Linear scaling with $\langle {\rm A}_{part}\rangle$ assumed for π^0 and η
- + $\langle {\sf A}_{part}
 angle^{4/3}$ scaling assumed for ω and ϕ

05/09/2021

Centrality dependent analysis

All centrality classes compare well ightarrow assumptions on hadron production seem reasonable

05/09/2021

Pair momentum dependent analysis

- Clear hints to in-medium modification of the ω (similar to previous HADES p+Nb measurement, *Phys. Let. B 8 (2012)*, 10.1016) - now seen in AgAg
- + ω multiplicity estimation possible for high momenta

- High quality AgAg data at $\sqrt{s_{NN}} = 2.55 \text{ GeV}$ and $\sqrt{s_{NN}} = 2.42 \text{ GeV}$ taken by HADES
- The upgraded spectrometer allows for high efficient electron identification paired with high pion suppression and conversion recognition: Unprecedented quality of DiElectron spectra
- Hints for in-medium modification of the ω meson comparing low and high momentum data
- Decomposition of the DiElectron spectrum and comparison to NN reference (GiBUU) enables temperature estimation (as in AuAu, Nature Physics volume 15, pages 1040–1045 (2019))

05/09/2021

