

Latest results on hadronic resonance production with ALICE at the LHC

Dukhishyam Mallick (for the ALICE Collaboration)

National Institute of Science Education and Research HBNI, Jatni, INDIA

Why resonances ?

Lifetime (fm/c): $\rho^0(1.3) < K^{*\pm}(3.6) < K^{*0}(4.16) < \Sigma^{*\pm}(5.0-5.5) < \Lambda^*(12.6) < \Xi^{*0}(21.7) < \varphi(46.2)$

Particles that are unstable against decay by the **strong interaction** (lifetime: ~10⁻²³ seconds (~1fm/c))

Hadronic phase: Phase between chemical and kinetic freeze-out

Physics topics:

- i. Hadrochemistry of particle production
- ii. Modification of yields: Rescattering vs regeneration
- iii. Estimate the lifetime of the hadronic phase
- iv. Study of in medium energy loss of partons
- v. Spin alignment: probing initial condition of collisions

References:

- 1. PLB 802 (2020) 135225
- 2. PLB 807 (2020) 135501
- 3. Phys. Rev. Lett. 125, 012301 (2020)
- 4. Phys. Rev. C 102 (2020) 024912
- 5. arXiv:2105.05760
- 6. arXiv:2106.13113

$p_{\rm T}$ spectra in high energy collisions

[1] PLB 807 (2020) 135501 [2] Eur.Phys.J.C 76 (2016) 5, 245

[3] arXiv:2106.13113

- Spectra get harder as multiplicity (or centrality) increases
- Evolution of spectral shape is qualitatively similar in pp [1], p-Pb[2] and Pb-Pb[3] collisions

Energy dependence of resonance production

- ✤ For $p_T < 1$ GeV/c
 → No strong collision energy dependence
- ✤ For $p_T > 1$ GeV/c
 →Ratio increases with p_T and depends on collision energy
- Similar behavior observed for resonances and other light-flavor hadrons (c)
- PYTHIA qualitatively reproduces the measurements, which are quantitatively better described by EPOS-LHC (b)

Mean transverse momenta (<p_>)

- $< p_T >$ increases with multiplicity
- $< p_T > rises faster in small collisions compared to heavy-ion collisions$
- r> increases with mass of hardons, **mass ordering** in central heavy-ion collisions (Pb-Pb, Xe-Xe)
- *** Mass ordering breaks down** for hadron with similar mass
 - (p, K^{*0}, **\$**) in peripheral Pb-Pb, p-Pb and pp collisions
- For similar multiplicity, $\langle p_T \rangle_{Pb-Pb} \sim \langle p_T \rangle_{Xe-Xe}$

Integrated yield (dN/dy)

 $\langle \mu p \rangle^{0.05}_{V} = 0.04$ $\langle \mu p \rangle^{0.04}_{V} = 0.05$ 0.050.050.050.050.050.050.03 ^{202-lul} (up/^{up} 0.025 0.02 0.02 0.05 0.03 p-Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV (EPJC 76 (2016) 245) ALICE ◆ pp, √s = 7 TeV (PRC 99 024906 (2019)) 2 2 VS_{NN} (TeV) 2.76 5.02 ♦ pp, √s = 13 TeV 0.01 **ALICE Preliminary** pp Nb)/(vb/Nb $K^{\star 0}$ 0 Pb-Pb + Pb-Pb **V0 Multiplicity Event Classes** ∕*0 ┝ \bullet 0.008 0.015 0.01 Uncertainties: stat. (bars), sys. (boxes) 0.006 0.01 0^L 30 10 20 40 50 60 $\langle dN_{ch}/d\eta \rangle_{\eta_{lab}} < 0.5$ 10² 10³ 10² 10^{3} 10 10 $\left< \mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta \right>_{|\eta| < 0.5}$ $\left< dN_{\rm ch} / d\eta \right>_{|\eta| < 0.5}$ ALI-PREL-145011

 \rightarrow Event multiplicity drives resonance yield

arXiv:2106.13113

Resonances to long lived particle ratios (K*0,+-/K)

7

ii.

Resonances to long lived particle ratios

Lifetime (fm/c): $\rho^0(1.3) < K^{*\pm}(3.6) < K^{*0}(4.16) < \Sigma^{*\pm}(5.0-5.5) < \Lambda^*(12.6) < \Xi^{*0}(21.7) < \phi(46.2)$

- K^{*0}/K ratio decreases with system size and values below statistical model predictions in central Pb-Pb collisions
- In contrast, φ/K constant across multiplicities in Pb-Pb, p-Pb and pp collisions, consistent with statistical model predictions in central Pb-Pb collisions
 - \rightarrow Lifetime of $\phi = 10 \text{ x longer than } \text{K}^{*0}$
 - → Rescattering dominant over regeneration

8

 ★ K^{*0}/K ratio slightly decreasing with multiplicity in pp and p–Pb
 → Hint for non-zero lifetime of hadronic phase in small collision systems

Extract lifetime of hadronic phase

Assumption : No regeneration effects between chemical and kinetic freeze-out

A smooth increase of τ (fm/c) with system size from p–Pb to Pb–Pb collisions observed

Nuclear modification factors (R_{AA} or R_{pPb})

*****For p_T > 6 GeV/c
 → R_{AA} < 1, suppression in central Pb-Pb collisions
 → R_{AA} =1, no suppression in p-Pb collisions
 → Similar R_{AA} or R_{pA} regardless of the quark content of hadron

Similar R_{AA} or R_{pA} values are observed for charmed mesons in Pb-Pb collisions [1] and in p-Pb collisions [2] π^0 at high p_{T}

Non-central heavy-ion collisions:

* Large angular momentum (~ $10^7\hbar$) due to medium rotation in participant nucleons [1],

High magnetic field (~10¹⁵ T) formed for a short time due to spectator nucleons [2] is expected In the initial stage of heavy-ion collisions at LHC energy.
 [1] PRC 77 (2008) 024906, Beccattini et al.

[2] NPA 803 (2008), Kharzeev et al.

Observable:

Anisotropies in angular distribution of decay daughters

K. Schilling et al., Nucl. Phys. B 15 (1970) 397

$$\frac{dN}{d\cos\theta^*} = N_0 [1 - \rho_{00} + \cos^2\theta^* (3\rho_{00} - 1)]$$

 ρ_{00} : Probability of vector meson is in spin state = 0

 $\rho_{00} = 1/3$: No spin alignment

Angular distribution of decay daughters of vector (spin=1) meson gets modified in presence of large angular momentum

 $\rho_{00} \neq 1/3$: spin alignment

Spin alignment: ρ_{00} vs. p_{T}

- Spin Alignment (ρ_{oo} < 1/3) observed at a lebel
- of 3σ (for K^{*0}) and 2σ (for ϕ) for vector mesons
- at low momentum mid-central collisions
- * No spin alignment ($\rho_{oo} \sim 1/3$)
 - → High- $p_{_{T}}$
 - \rightarrow For spin 0 particle (K⁰_s)
 - \rightarrow In proton-proton collisions
 - → For random planes

 ${\rm p_T}$ and centrality dependence of $\rho_{\rm 00}$ are qualitatively consistent with predictions from quark-recombination [2].

Similar behavior observed with measurements Pb-Pb @5.02 TeV (Run1 (2015)).

High statistics in Pb-Pb @5.02 TeV (Run 2 (2018)) in progress -Provide further precision measurement, energy dependence and spin alignment of K*--

Explore new resonances

[1] Tanabashiet al. (PDG), Phys. Rev. D 98 (2018) 030001
[2] G. Aarts et al., Arxiv: 1710.00566v1

f₀(980): tetraquark candidate[1] Mass (M) : (0.99 ± 0.02) GeV/c² Full width Γ from 0.01 to 0.1 GeV/c²

 $\Xi(1820)$: Candidate for chiral symmetry restoration[2] Measurement of $\Xi(1820)$ in progress in pp, p-Pb and Pb-Pb collisions (AK channels)

Search for higher mass resonance $K^{0*}(1420)$ and $K_2^*(1430)$, $f_2(1525)$ are ongoing

Summary and outlook

- **Spectra shape evolution with multiplicity** at low p_{T} . No changes at high p_{T}
- The contribution of hard scattering processes to particle production increases with energy
- **Event multiplicity drives** resonance production
- \Box < $p_{\rm T}$ > follows **mass ordering** in central Pb-Pb and Xe-Xe collisions
- Evidence of rescattering effects in K^{*0}/K for central Pb-Pb collisions. Hint of non-zero lifetime of hadronic phase in high multiplicity small collisions
- **I** Presence of **in medium effects** in Pb-Pb collisions emerging from the study of R_{AA}
- Spin alignment ($\rho_{00} < 1/3$) of vector mesons are observed in heavy-ion collisions at low p_T in mid-central Pb-Pb collisions \rightarrow Precision studies with high statistics in progress
- Spin alignment of vector mesons **qualitatively** consistent with **quark recombination**, more theoretical efforts are required for comprehensive quantitative comparison
- Study of higher mass and rare resonances will be explored exploiting Run2 and high statistics Run3 data

Back up

$p_{\rm T}$ spectra in heavy-ion collisions

22nd Particle And Nuclei International Conference (PANIC)

ALICE Detector

Inner Tracking System(ITS): $(|\eta| < 0.9)$

- ✤ 6 layers of silicon detector
- Tracking, vertex, PID (dE/dx)

Forward detector (V0): V0A(2.8<η<5.1)&V0C(-3.7<η<-1.7)

 Trigger, centrality estimator TimeProjectionChamber (TPC): $(|\eta| < 0.9)$

- Primary vertex determination
- ✤ Main tracking device
- ✤ PID (dE/dx) in gas

Heavy-Ion Collisions and Initial State

Analysis details: resonance reconstruction

1. Short-lived particles reconstructed through invariant mass method (example : $K^{*0} \longrightarrow K^{+} + \pi^{-}$)

1

 $M_{\rm inv} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$

2. Identify all decay products, add 4 momentum of each pair and find the mass

- 3. Look for a peak on top of combinatorial background
- 4. Estimate of the combinatorial background distribution using different techniques (like-charge, event mixing, rotational method)

 i) Same event (signal+ background) and normalised mixed event distribution
 ii) Some event distribution of terminated and

- ii)Same event distribution after mixed event background subtraction
- iii) K^{*0}: Breit-Wigner + Residual background function (pol2)
- iv) Yield is calculated as a function of $p_{\rm T}$ for various multiplicity/centrality classes

Yield : Area under the BW

R_{AA} vs centrality, Energy and System

♦ R_{AA}:

 -> Suppression decreases from most central to peripheral

-> No significant energy dependence for all centrality classes

-> No system size dependence at similar multiplicity

p_{T} -differential particle ratios

At low $p_{T} K^{*0}/K$ for central collisions are lower than

peripheral (pp) collisions whereas ϕ/K are comparable

within the uncertainties —> due to re-scattering

process in the

hadronic phase must effect on low momentum Intermediate p_{T} :

 \rightarrow Ratios show greater enhancement for central Pb-Pb collisions than peripheral and pp collisions (more for φ than $K^{*0})$

Energy dependence

